|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": { |
| 7 | + "collapsed": true |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "import pandas\n", |
| 12 | + "import email\n", |
| 13 | + "from sklearn.feature_extraction.text import CountVectorizer\n", |
| 14 | + "import html2text\n", |
| 15 | + "\n", |
| 16 | + "dataset = pandas.read_msgpack('./data/development.msg', encoding='latin-1')\n", |
| 17 | + "dataset['email'] = dataset['email'].apply(email.message_from_string)\n" |
| 18 | + ] |
| 19 | + }, |
| 20 | + { |
| 21 | + "cell_type": "code", |
| 22 | + "execution_count": 3, |
| 23 | + "metadata": { |
| 24 | + "collapsed": false |
| 25 | + }, |
| 26 | + "outputs": [], |
| 27 | + "source": [ |
| 28 | + "corpus = []\n", |
| 29 | + "for (index, row) in dataset.iterrows():\n", |
| 30 | + " if row['class'] == 'spam':\n", |
| 31 | + " for part in row['email'].walk():\n", |
| 32 | + " if part.get_content_type() == 'text/plain':\n", |
| 33 | + " body = part.get_payload()\n", |
| 34 | + " elif part.get_content_type() == 'text/html':\n", |
| 35 | + " body = html2text.html2text(part.get_payload())\n", |
| 36 | + " \n", |
| 37 | + " corpus.append(body)" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "code", |
| 42 | + "execution_count": 4, |
| 43 | + "metadata": { |
| 44 | + "collapsed": false |
| 45 | + }, |
| 46 | + "outputs": [ |
| 47 | + { |
| 48 | + "ename": "MemoryError", |
| 49 | + "evalue": "", |
| 50 | + "output_type": "error", |
| 51 | + "traceback": [ |
| 52 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 53 | + "\u001b[0;31mMemoryError\u001b[0m Traceback (most recent call last)", |
| 54 | + "\u001b[0;32m<ipython-input-4-e950e1df90b3>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mpca\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mRandomizedPCA\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mn_components\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m50\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mwhiten\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mpca_model\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpca\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mwords_model\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", |
| 55 | + "\u001b[0;32mc:\\python35\\lib\\site-packages\\scipy\\sparse\\compressed.py\u001b[0m in \u001b[0;36mtoarray\u001b[0;34m(self, order, out)\u001b[0m\n\u001b[1;32m 918\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mtoarray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0morder\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mout\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 919\u001b[0m \u001b[1;34m\"\"\"See the docstring for `spmatrix.toarray`.\"\"\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 920\u001b[0;31m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtocoo\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcopy\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0morder\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0morder\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mout\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mout\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 921\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 922\u001b[0m \u001b[1;31m##############################################################\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", |
| 56 | + "\u001b[0;32mc:\\python35\\lib\\site-packages\\scipy\\sparse\\coo.py\u001b[0m in \u001b[0;36mtoarray\u001b[0;34m(self, order, out)\u001b[0m\n\u001b[1;32m 250\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mtoarray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0morder\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mout\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 251\u001b[0m \u001b[1;34m\"\"\"See the docstring for `spmatrix.toarray`.\"\"\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m--> 252\u001b[0;31m \u001b[0mB\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_process_toarray_args\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0morder\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mout\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 253\u001b[0m \u001b[0mfortran\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mB\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mflags\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mf_contiguous\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 254\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mfortran\u001b[0m \u001b[1;32mand\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mB\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mflags\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mc_contiguous\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", |
| 57 | + "\u001b[0;32mc:\\python35\\lib\\site-packages\\scipy\\sparse\\base.py\u001b[0m in \u001b[0;36m_process_toarray_args\u001b[0;34m(self, order, out)\u001b[0m\n\u001b[1;32m 1007\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mout\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1008\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1009\u001b[0;31m \u001b[1;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0morder\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0morder\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1010\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m 1011\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m__numpy_ufunc__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpos\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0minputs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", |
| 58 | + "\u001b[0;31mMemoryError\u001b[0m: " |
| 59 | + ] |
| 60 | + } |
| 61 | + ], |
| 62 | + "source": [ |
| 63 | + "import io\n", |
| 64 | + "\n", |
| 65 | + "vectorizer = CountVectorizer(min_df=1)\n", |
| 66 | + "words_model = vectorizer.fit_transform(corpus)" |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "code", |
| 71 | + "execution_count": 12, |
| 72 | + "metadata": { |
| 73 | + "collapsed": false, |
| 74 | + "scrolled": true |
| 75 | + }, |
| 76 | + "outputs": [], |
| 77 | + "source": [ |
| 78 | + "from sklearn.decomposition import TruncatedSVD\n", |
| 79 | + "pca = TruncatedSVD(n_components=200)\n", |
| 80 | + "pca_model = pca.fit_transform(words_model)" |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "code", |
| 85 | + "execution_count": 11, |
| 86 | + "metadata": { |
| 87 | + "collapsed": false |
| 88 | + }, |
| 89 | + "outputs": [ |
| 90 | + { |
| 91 | + "data": { |
| 92 | + "text/plain": [ |
| 93 | + "array([[ 0., 0., 0., ..., 0., 0., 0.],\n", |
| 94 | + " [ 0., 0., 0., ..., 0., 0., 0.],\n", |
| 95 | + " [ 0., 0., 0., ..., 0., 0., 0.],\n", |
| 96 | + " ..., \n", |
| 97 | + " [ 0., 0., 0., ..., 0., 0., 0.],\n", |
| 98 | + " [ 0., 0., 0., ..., 0., 0., 0.],\n", |
| 99 | + " [ 0., 0., 0., ..., 0., 0., 0.]])" |
| 100 | + ] |
| 101 | + }, |
| 102 | + "execution_count": 11, |
| 103 | + "metadata": {}, |
| 104 | + "output_type": "execute_result" |
| 105 | + } |
| 106 | + ], |
| 107 | + "source": [ |
| 108 | + "pca.transform(vectorizer.transform(corpus[0]))" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "code", |
| 113 | + "execution_count": 17, |
| 114 | + "metadata": { |
| 115 | + "collapsed": false |
| 116 | + }, |
| 117 | + "outputs": [ |
| 118 | + { |
| 119 | + "name": "stdout", |
| 120 | + "output_type": "stream", |
| 121 | + "text": [ |
| 122 | + "36091\n", |
| 123 | + "200\n" |
| 124 | + ] |
| 125 | + } |
| 126 | + ], |
| 127 | + "source": [] |
| 128 | + }, |
| 129 | + { |
| 130 | + "cell_type": "code", |
| 131 | + "execution_count": null, |
| 132 | + "metadata": { |
| 133 | + "collapsed": true |
| 134 | + }, |
| 135 | + "outputs": [], |
| 136 | + "source": [ |
| 137 | + "from sklearn.base import BaseEstimator, TransformerMixin\n", |
| 138 | + "from sklearn.pipeline import FeatureUnion\n", |
| 139 | + "from sklearn.pipeline import Pipeline\n", |
| 140 | + "\n", |
| 141 | + "\n", |
| 142 | + "\n", |
| 143 | + "class FeatureTransformer(BaseEstimator, TransformerMixin):\n", |
| 144 | + " def fit(self, x, y=None):\n", |
| 145 | + " return self\n", |
| 146 | + " \n", |
| 147 | + " def generate(x):\n", |
| 148 | + " return x\n", |
| 149 | + " \n", |
| 150 | + " def transform(self, data):\n", |
| 151 | + " features = []\n", |
| 152 | + " \n", |
| 153 | + " for entry in data:\n", |
| 154 | + " features.append(self.generate(data))\n", |
| 155 | + " \n", |
| 156 | + " return features\n", |
| 157 | + " \n", |
| 158 | + "# Converts textual emails to python email objects\n", |
| 159 | + "class EmailGenerator(BaseEstimator, TransformerMixin):\n", |
| 160 | + " def fit(self, x, y=None):\n", |
| 161 | + " return self\n", |
| 162 | + " \n", |
| 163 | + " def transform(self, data):\n", |
| 164 | + " import email\n", |
| 165 | + " data['email'] = data['email'].apply(email.message_from_string)\n", |
| 166 | + " return data\n", |
| 167 | + "\n", |
| 168 | + "class ContentTypeGenerator(BaseEstimator, TransformerMixin):\n", |
| 169 | + " def __init__(self):\n", |
| 170 | + " pass\n", |
| 171 | + " \n", |
| 172 | + " def fit(self, x, y=None):\n", |
| 173 | + " return self\n", |
| 174 | + " \n", |
| 175 | + " def transform(self, data):\n", |
| 176 | + " check = ['x-world', 'application', 'text', 'text/plain', 'text/html', 'video', 'audio', 'image', 'drawing', 'model', 'multipart', 'x-conference', 'i-world', 'music', 'message', 'x-music', 'www', 'chemical', 'paleovu', 'windows', 'xgl']\n", |
| 177 | + " features = []\n", |
| 178 | + " \n", |
| 179 | + " for entry in data:\n", |
| 180 | + " email = entry['email']\n", |
| 181 | + " output = collections.defaultdict(bool)\n", |
| 182 | + "\n", |
| 183 | + " for part in email.walk():\n", |
| 184 | + " ct = part.get_content_type()\n", |
| 185 | + "\n", |
| 186 | + " for kind in check:\n", |
| 187 | + " output['has_' + kind] |= ct.startswith(kind)\n", |
| 188 | + " \n", |
| 189 | + " features.append(output)\n", |
| 190 | + " \n", |
| 191 | + " return features\n", |
| 192 | + " \n", |
| 193 | + " \n", |
| 194 | + "class EmailCountsGenerator(BaseEstimator, TransformerMixin):\n", |
| 195 | + " def __init__(self):\n", |
| 196 | + " pass\n", |
| 197 | + " \n", |
| 198 | + " def fit(self, x, y=None):\n", |
| 199 | + " return self\n", |
| 200 | + " \n", |
| 201 | + " def transform(self, data):\n", |
| 202 | + " features = []\n", |
| 203 | + " \n", |
| 204 | + " for entry in data:\n", |
| 205 | + " email = str(entry['email'])\n", |
| 206 | + " \n", |
| 207 | + " output = {\n", |
| 208 | + " 'length': len(email),\n", |
| 209 | + " 'spaces': email.count(' '),\n", |
| 210 | + " 'newlines': email.count('\\n')\n", |
| 211 | + " }\n", |
| 212 | + " \n", |
| 213 | + " features.append(output)\n", |
| 214 | + " \n", |
| 215 | + " return features\n", |
| 216 | + "\n", |
| 217 | + "class ContentTypeGenerator(BaseEstimator, TransformerMixin):\n", |
| 218 | + " def __init__(self):\n", |
| 219 | + " pass\n", |
| 220 | + " \n", |
| 221 | + " def fit(self, x, y=None):\n", |
| 222 | + " return self\n", |
| 223 | + " \n", |
| 224 | + " def transform(self, data):\n", |
| 225 | + " features = []\n", |
| 226 | + " \n", |
| 227 | + " for entry in data:\n", |
| 228 | + " email = entry['email']\n", |
| 229 | + " output = {}\n", |
| 230 | + " \n", |
| 231 | + " features.append(output)\n", |
| 232 | + " \n", |
| 233 | + " return features\n", |
| 234 | + " \n", |
| 235 | + "class FeatureGeneratorBase(BaseEstimator, TransformerMixin):\n", |
| 236 | + " def __init__(self):\n", |
| 237 | + " pass\n", |
| 238 | + " \n", |
| 239 | + " def fit(self, x, y=None):\n", |
| 240 | + " return self\n", |
| 241 | + " \n", |
| 242 | + " def transform(self, data):\n", |
| 243 | + " features = np.recarray(shape=(len(data),),\n", |
| 244 | + " dtype=[('subject', object), ('body', object)])\n", |
| 245 | + " \n", |
| 246 | + " return features\n", |
| 247 | + "\n", |
| 248 | + " \n", |
| 249 | + "pipeline = Pipeline([\n", |
| 250 | + " ('transform_email', EmailGenerator()),\n", |
| 251 | + " ('features', FeatureUnion=(\n", |
| 252 | + " transformer_list=[\n", |
| 253 | + " ('content_type_features', ContentTypeGenerator())\n", |
| 254 | + " ]\n", |
| 255 | + " ))\n", |
| 256 | + " ])" |
| 257 | + ] |
| 258 | + } |
| 259 | + ], |
| 260 | + "metadata": { |
| 261 | + "kernelspec": { |
| 262 | + "display_name": "Python 3", |
| 263 | + "language": "python", |
| 264 | + "name": "python3" |
| 265 | + }, |
| 266 | + "language_info": { |
| 267 | + "codemirror_mode": { |
| 268 | + "name": "ipython", |
| 269 | + "version": 3 |
| 270 | + }, |
| 271 | + "file_extension": ".py", |
| 272 | + "mimetype": "text/x-python", |
| 273 | + "name": "python", |
| 274 | + "nbconvert_exporter": "python", |
| 275 | + "pygments_lexer": "ipython3", |
| 276 | + "version": "3.5.1" |
| 277 | + } |
| 278 | + }, |
| 279 | + "nbformat": 4, |
| 280 | + "nbformat_minor": 1 |
| 281 | +} |
0 commit comments