|
1 | 1 | package g3301_3400.s3343_count_number_of_balanced_permutations;
|
2 | 2 |
|
3 |
| -// #Hard #2024_11_04_Time_182_ms_(100.00%)_Space_45.6_MB_(100.00%) |
4 |
| - |
5 |
| -import java.util.ArrayList; |
6 |
| -import java.util.HashMap; |
7 |
| -import java.util.List; |
8 |
| -import java.util.Map; |
| 3 | +// #Hard #2024_11_05_Time_61_ms_(97.56%)_Space_44.3_MB_(100.00%) |
9 | 4 |
|
10 | 5 | public class Solution {
|
11 |
| - private static final long M = 1000000007; |
12 |
| - private int[] freq; |
| 6 | + private static final int M = 1000000007; |
13 | 7 |
|
14 |
| - public int countBalancedPermutations(String num) { |
15 |
| - int[] freq = new int[10]; |
16 |
| - int sum = 0; |
17 |
| - for (int i = 0; i < num.length(); i++) { |
18 |
| - int v = num.charAt(i) - '0'; |
19 |
| - freq[v]++; |
20 |
| - sum += v; |
21 |
| - } |
22 |
| - if (sum % 2 == 1) { |
23 |
| - return 0; |
| 8 | + public int countBalancedPermutations(String n) { |
| 9 | + int l = n.length(); |
| 10 | + int ts = 0; |
| 11 | + int[] c = new int[10]; |
| 12 | + for (char d : n.toCharArray()) { |
| 13 | + c[d - '0']++; |
| 14 | + ts += d - '0'; |
24 | 15 | }
|
25 |
| - sum /= 2; |
26 |
| - this.freq = freq; |
27 |
| - int evenCount = num.length() / 2; |
28 |
| - int oddCount = num.length() - evenCount; |
29 |
| - return (int) countAll(9, evenCount, oddCount, sum, sum); |
30 |
| - } |
31 |
| - |
32 |
| - private final Map<Long, Long> cache = new HashMap<>(); |
33 |
| - |
34 |
| - private long countAll( |
35 |
| - int idx, int evenLeftCount, int oddLeftCount, int evenLeftSum, int oddLeftSum) { |
36 |
| - if (evenLeftCount < 0 || oddLeftCount < 0 || evenLeftSum < 0 || oddLeftSum < 0) { |
| 16 | + if (ts % 2 != 0) { |
37 | 17 | return 0;
|
38 | 18 | }
|
39 |
| - if (idx == -1) { |
40 |
| - if (evenLeftCount == 0 && oddLeftCount == 0) { |
41 |
| - return 1; |
42 |
| - } |
43 |
| - return 0; |
| 19 | + int hs = ts / 2; |
| 20 | + int m = (l + 1) / 2; |
| 21 | + long[] f = new long[l + 1]; |
| 22 | + f[0] = 1; |
| 23 | + for (int i = 1; i <= l; i++) { |
| 24 | + f[i] = f[i - 1] * i % M; |
44 | 25 | }
|
45 |
| - long key = (((long) evenLeftCount) << 48) + (((long) evenLeftSum) << 32) + idx; |
46 |
| - if (cache.containsKey(key)) { |
47 |
| - return cache.get(key); |
| 26 | + long[] invF = new long[l + 1]; |
| 27 | + invF[l] = modInverse(f[l], M); |
| 28 | + for (int i = l - 1; i >= 0; i--) { |
| 29 | + invF[i] = invF[i + 1] * (i + 1) % M; |
48 | 30 | }
|
49 |
| - long total = 0; |
50 |
| - for (int i = 0; i <= freq[idx]; i++) { |
51 |
| - int j = freq[idx] - i; |
52 |
| - long c = |
53 |
| - countAll( |
54 |
| - idx - 1, |
55 |
| - evenLeftCount - i, |
56 |
| - oddLeftCount - j, |
57 |
| - evenLeftSum - i * idx, |
58 |
| - oddLeftSum - j * idx); |
59 |
| - if (c == 0) { |
| 31 | + long[][] dp = new long[m + 1][hs + 1]; |
| 32 | + dp[0][0] = 1; |
| 33 | + for (int d = 0; d <= 9; d++) { |
| 34 | + if (c[d] == 0) { |
60 | 35 | continue;
|
61 | 36 | }
|
62 |
| - c = (c * choose(evenLeftCount, i)) % M; |
63 |
| - c = (c * choose(oddLeftCount, j)) % M; |
64 |
| - total = (total + c) % M; |
| 37 | + for (int k = m; k >= 0; k--) { |
| 38 | + for (int s = hs; s >= 0; s--) { |
| 39 | + if (dp[k][s] == 0) { |
| 40 | + continue; |
| 41 | + } |
| 42 | + for (int t = 1; t <= c[d] && k + t <= m && s + d * t <= hs; t++) { |
| 43 | + dp[k + t][s + d * t] = |
| 44 | + (dp[k + t][s + d * t] + dp[k][s] * comb(c[d], t, f, invF, M)) % M; |
| 45 | + } |
| 46 | + } |
| 47 | + } |
65 | 48 | }
|
66 |
| - cache.put(key, total); |
67 |
| - return total; |
68 |
| - } |
69 |
| - |
70 |
| - private static final List<long[]> LONGS = new ArrayList<>(); |
71 |
| - |
72 |
| - static { |
73 |
| - LONGS.add(new long[] {1}); |
| 49 | + long w = dp[m][hs]; |
| 50 | + long r = f[m] * f[l - m] % M; |
| 51 | + for (int d = 0; d <= 9; d++) { |
| 52 | + r = r * invF[c[d]] % M; |
| 53 | + } |
| 54 | + r = r * w % M; |
| 55 | + return (int) r; |
74 | 56 | }
|
75 | 57 |
|
76 |
| - private static long choose(int a, int b) { |
77 |
| - while (a >= LONGS.size()) { |
78 |
| - long[] prev = LONGS.get(LONGS.size() - 1); |
79 |
| - long[] next = new long[prev.length + 1]; |
80 |
| - for (int i = 0; i < prev.length; i++) { |
81 |
| - next[i] = (next[i] + prev[i]) % M; |
82 |
| - next[i + 1] = prev[i]; |
| 58 | + private long modInverse(long a, int m) { |
| 59 | + long r = 1; |
| 60 | + long p = m - 2; |
| 61 | + long b = a; |
| 62 | + while (p > 0) { |
| 63 | + if ((p & 1) == 1) { |
| 64 | + r = r * b % m; |
83 | 65 | }
|
84 |
| - LONGS.add(next); |
85 |
| - } |
86 |
| - if (a - b < b) { |
87 |
| - b = a - b; |
| 66 | + b = b * b % m; |
| 67 | + p >>= 1; |
88 | 68 | }
|
89 |
| - if (b < 0) { |
| 69 | + return r; |
| 70 | + } |
| 71 | + |
| 72 | + private long comb(int n, int k, long[] f, long[] invF, int m) { |
| 73 | + if (k > n) { |
90 | 74 | return 0;
|
91 | 75 | }
|
92 |
| - return LONGS.get(a)[b]; |
| 76 | + return f[n] * invF[k] % m * invF[n - k] % m; |
93 | 77 | }
|
94 | 78 | }
|
0 commit comments