-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpage_allocator_linux.odin
214 lines (179 loc) · 6.59 KB
/
page_allocator_linux.odin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#+private
package page_allocator
import "base:runtime"
import "base:intrinsics"
import "core:mem"
import "core:mem/virtual"
import "core:sys/linux"
_GRANULARITY_MIN :: 4 * mem.Kilobyte
_GRANULARITY_MAX :: 1 * mem.Gigabyte
// log2 of the huge page size << 26
MAP_HUGE_2MB : i32 : 21 << 26
MAP_HUGE_1GB : i32 : 30 << 26
@(require_results)
_page_aligned_alloc :: proc(size, alignment, granularity: int,
flags: Page_Allocator_Flags) -> (memory: []byte, err: mem.Allocator_Error) {
seek_alignment_and_commit :: proc(reserve: []byte, size, alignment, granularity: int) -> (memory: []byte, err: mem.Allocator_Error) {
size_full := mem.align_forward_int(size, granularity)
base := uintptr(&reserve[0])
addr := mem.align_forward_int(int(base), alignment)
base_waste := addr - int(base)
memory = reserve[base_waste:base_waste + size]
if base_waste > 0 {
virtual.release(&reserve[0], uint(base_waste))
}
post_waste := (alignment - granularity) - base_waste
if post_waste > 0 {
post_waste_ptr := rawptr(uintptr(addr + size_full))
virtual.release(post_waste_ptr, uint(post_waste))
}
err = virtual.commit(&memory[0], uint(size_full))
if err != nil {
virtual.release(&memory[0], uint(size_full))
memory = nil
}
return
}
assert(granularity >= GRANULARITY_MIN)
assert(granularity <= GRANULARITY_MAX)
assert(runtime.is_power_of_two(granularity))
assert(alignment <= GRANULARITY_MAX)
assert(runtime.is_power_of_two(alignment))
if size == 0 {
return nil, .Invalid_Argument
}
alignment := alignment
alignment = max(alignment, GRANULARITY_MIN)
size_full := mem.align_forward_int(size, granularity)
if alignment == GRANULARITY_MIN {
memory, err = virtual.reserve_and_commit(uint(size_full))
if err != nil {
memory = memory[:size]
}
return
}
if .Allow_Large_Pages in flags {
if granularity >= mem.Gigabyte && size >= mem.Gigabyte {
raw_map_flags := i32(MAP_HUGE_1GB)
map_flags := transmute(linux.Map_Flags)(raw_map_flags)
map_flags += {.ANONYMOUS, .PRIVATE, .HUGETLB}
ptr, errno := linux.mmap(0, uint(size_full), {.READ, .WRITE}, map_flags)
if ptr != nil && errno == nil {
return mem.byte_slice(ptr, size), nil
}
} else if granularity > 2 * mem.Megabyte && size > 2 * mem.Megabyte {
raw_map_flags := i32(MAP_HUGE_2MB)
map_flags := transmute(linux.Map_Flags)(raw_map_flags)
map_flags += {.ANONYMOUS, .PRIVATE, .HUGETLB}
if alignment < 2 * mem.Megabyte {
ptr, errno := linux.mmap(0, uint(size_full), {.READ, .WRITE}, map_flags)
if ptr != nil && errno == nil {
return mem.byte_slice(ptr, size), nil
}
} else {
reserve_size := size_full + (alignment - 2 * mem.Megabyte)
reserve_ptr, errno := linux.mmap(0, uint(reserve_size), {}, map_flags)
reserve := mem.byte_slice(reserve_ptr, reserve_size)
if reserve_ptr != nil && errno == nil {
return seek_alignment_and_commit(reserve, size, alignment, granularity)
}
}
}
}
// We gave ourselves enough extra space to retrieve the size AND seek
// to the desired alignment.
reserve_size := size_full + (alignment - GRANULARITY_MIN)
reserve := virtual.reserve(uint(reserve_size)) or_return
return seek_alignment_and_commit(reserve, size, alignment, granularity)
}
@(require_results)
_page_aligned_resize :: proc(old_ptr: rawptr,
old_size, new_size, new_alignment, granularity: int,
flags: Page_Allocator_Flags) -> (memory: []byte, err: mem.Allocator_Error) {
assert(granularity >= GRANULARITY_MIN)
assert(granularity <= GRANULARITY_MAX)
assert(runtime.is_power_of_two(granularity))
assert(new_alignment <= GRANULARITY_MAX)
assert(runtime.is_power_of_two(new_alignment))
if old_ptr == nil || !mem.is_aligned(old_ptr, granularity) {
return mem.byte_slice(old_ptr, old_size), .Invalid_Pointer
}
if new_size == 0 {
return nil, page_free(old_ptr, old_size)
}
old_size_full := mem.align_forward_int(old_size, granularity)
new_size_full := mem.align_forward_int(new_size, granularity)
new_alignment := new_alignment
new_alignment = max(new_alignment, GRANULARITY_MIN)
// Can we meet the request with existing memory?
if new_size <= old_size_full {
memory = mem.byte_slice(old_ptr, new_size)
if new_size > old_size {
if .Uninitialized_Memory not_in flags {
mem.zero_slice(memory[old_size:])
}
} else if new_size_full < old_size_full {
unused := uintptr(old_ptr) + uintptr(new_size_full)
virtual.release(rawptr(unused), uint(old_size_full - new_size_full))
}
return
}
// Can we resize in place?
if mem.is_aligned(old_ptr, new_alignment) {
memory, err = _resize_allocation(old_ptr, uint(old_size_full), uint(new_size_full), may_move=false)
if err == nil {
return memory[:new_size], nil
}
}
// Do we *need* to do a manual allocate -> copy -> free?
if .Never_Free in flags || new_alignment > GRANULARITY_MIN {
memory, err = page_aligned_alloc(new_size, new_alignment, granularity, flags)
if err != nil {
return mem.byte_slice(old_ptr, old_size), err
}
mem.copy_non_overlapping(&memory[0], old_ptr, old_size)
if .Never_Free not_in flags {
virtual.release(old_ptr, uint(old_size_full))
}
return
}
memory, err = _resize_allocation(old_ptr, uint(old_size_full), uint(new_size_full), may_move=true)
if err != nil {
return mem.byte_slice(old_ptr, old_size), err
}
memory = memory[:new_size]
if .Allow_Large_Pages in flags &&
new_size > 2 * mem.Megabyte &&
new_size - old_size > new_size / 2 {
attempt_huge_page_collapse(&memory[0], len(memory))
}
return
}
_resize_allocation :: proc (old_data: rawptr, old_size, new_size: uint, may_move: bool) -> (data: []byte, err: mem.Allocator_Error) {
flags: linux.MRemap_Flags
if may_move {
flags += {.MAYMOVE}
}
addr, errno := linux.mremap(old_data, old_size, new_size, flags)
#partial switch errno {
case .EINVAL, .EFAULT:
return (cast([^]byte)old_data)[:old_size], .Invalid_Pointer
case .ENOMEM, .EAGAIN:
return (cast([^]byte)old_data)[:old_size], .Out_Of_Memory
}
return (cast([^]byte)addr)[:new_size], nil
}
attempt_huge_page_collapse :: proc(addr: rawptr, size: int) {
if size < 2 * mem.Megabyte {
return
}
size_full := mem.align_forward_int(size, 2 * mem.Megabyte)
huge_page_addr := mem.align_forward(addr, 2 * mem.Megabyte)
huge_page_size := uintptr(size_full) - (uintptr(huge_page_addr) - uintptr(addr))
if huge_page_size < 2 * mem.Megabyte {
return
}
// This is purely an optimization that attempts to use Transparent Huge Pages (THPs).
// THPs have the same semantics as regular 4K pages, so we don't need to track them.
_ = linux.madvise(huge_page_addr, uint(huge_page_size), .COLLAPSE)
}