-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
283 lines (258 loc) · 13.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
"""
train EDCNet
"""
import argparse
import os
import numpy as np
from tqdm import tqdm
import torch
from mypath import Path
from dataloaders import make_data_loader
from models.edcnet import EDCNet
from utils.loss import SegmentationLosses
from models.replicate import patch_replication_callback
from utils.calculate_weights import calculate_weigths_labels
from utils.lr_scheduler import LR_Scheduler
from utils.saver import Saver
from utils.summaries import TensorboardSummary
from utils.metrics import Evaluator
class Trainer(object):
def __init__(self, args):
self.args = args
self.saver = Saver(args)
self.saver.save_experiment_config()
self.summary = TensorboardSummary(self.saver.experiment_dir)
self.writer = self.summary.create_summary()
self.logger = self.saver.create_logger()
kwargs = {'num_workers': args.workers, 'pin_memory': False}
self.train_loader, self.val_loader, self.test_loader, self.nclass = make_data_loader(args, **kwargs)
self.model = EDCNet(args.rgb_dim, args.event_dim, num_classes=self.nclass, use_bn=True)
train_params = [{'params': self.model.random_init_params(),
'lr': 10*args.lr, 'weight_decay': 10*args.weight_decay},
{'params': self.model.fine_tune_params(),
'lr': args.lr, 'weight_decay': args.weight_decay}]
self.optimizer = torch.optim.Adam(train_params, lr=args.lr, weight_decay=args.weight_decay)
if args.cuda:
self.model = torch.nn.DataParallel(self.model, device_ids=self.args.gpu_ids)
patch_replication_callback(self.model)
self.model = self.model.to(self.args.device)
if args.use_balanced_weights:
root_dir = Path.db_root_dir(args.dataset)[0] if isinstance(Path.db_root_dir(args.dataset), list) else Path.db_root_dir(args.dataset)
classes_weights_path = os.path.join(root_dir,
args.dataset + '_classes_weights.npy')
if os.path.isfile(classes_weights_path):
weight = np.load(classes_weights_path)
else:
weight = calculate_weigths_labels(args.dataset, self.train_loader, self.nclass, classes_weights_path)
weight = torch.from_numpy(weight.astype(np.float32))
else:
weight = None
self.criterion = SegmentationLosses(weight=weight, cuda=args.cuda).build_loss(mode=args.loss_type)
self.criterion_event = SegmentationLosses(weight=weight, cuda=args.cuda).build_loss(mode='event')
self.scheduler = LR_Scheduler(args.lr_scheduler, args.lr, args.epochs, len(self.train_loader), warmup_epochs=5)
self.evaluator = Evaluator(self.nclass, self.logger)
self.saver.save_model_summary(self.model)
self.best_pred = 0.0
if args.resume is not None:
if not os.path.isfile(args.resume):
raise RuntimeError("=> no checkpoint found at '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location='cuda:0')
args.start_epoch = checkpoint['epoch']
if args.cuda:
self.model.module.load_state_dict(checkpoint['state_dict'])
else:
self.model.load_state_dict(checkpoint['state_dict'])
if not args.ft:
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.best_pred = checkpoint['best_pred']
print("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
if args.ft:
args.start_epoch = 0
def training(self, epoch):
train_loss = 0.0
self.model.train()
tbar = tqdm(self.train_loader)
num_img_tr = len(self.train_loader)
for i, sample in enumerate(tbar):
target = sample['label']
image = sample['image']
event = sample['event']
if self.args.cuda:
target = target.to(self.args.device)
image = image.to(self.args.device)
event = event.to(self.args.device)
self.scheduler(self.optimizer, i, epoch, self.best_pred)
self.optimizer.zero_grad()
output, output_event = self.model(image)
loss = self.criterion(output, target)
loss_event = self.criterion_event(output_event, event)
loss += (loss_event * 0.1)
loss.backward()
self.optimizer.step()
train_loss += loss.item()
tbar.set_description('Train loss: %.3f' % (train_loss / (i + 1)))
self.writer.add_scalar('train/total_loss_iter', loss.item(), i + num_img_tr * epoch)
self.writer.add_scalar('train/total_loss_epoch', train_loss/num_img_tr, epoch)
self.logger.info('[Epoch: %d, numImages: %5d]' % (epoch, i * self.args.batch_size + target.data.shape[0]))
self.logger.info('Loss: %.3f' % (train_loss/num_img_tr))
if self.args.no_val:
is_best = False
self.saver.save_checkpoint({
'epoch': epoch + 1,
'state_dict': self.model.module.state_dict(),
'optimizer': self.optimizer.state_dict(),
'best_pred': self.best_pred,
}, is_best)
def validation(self, epoch):
self.model.eval()
self.evaluator.reset()
tbar = tqdm(self.val_loader, desc='\r')
test_loss = 0.0
num_img_val = len(self.val_loader)
for i, (sample, _) in enumerate(tbar):
target = sample['label']
image = sample['image']
event = sample['event']
if self.args.cuda:
target = target.to(self.args.device)
image = image.to(self.args.device)
event = event.to(self.args.device)
with torch.no_grad():
output, output_event = self.model(image)
loss = self.criterion(output, target)
loss_event = self.criterion_event(output_event, event)
loss += (loss_event * 20)
test_loss += loss.item()
tbar.set_description('Test loss: %.3f' % (test_loss / (i + 1)))
pred = output.data.cpu().numpy()
target = target.cpu().numpy()
pred = np.argmax(pred, axis=1)
self.evaluator.add_batch(target, pred)
Acc = self.evaluator.Pixel_Accuracy()
Acc_class = self.evaluator.Pixel_Accuracy_Class()
mIoU = self.evaluator.Mean_Intersection_over_Union()
FWIoU = self.evaluator.Frequency_Weighted_Intersection_over_Union()
self.writer.add_scalar('val/total_loss_epoch', test_loss/len(self.val_loader), epoch)
self.writer.add_scalar('val/mIoU', mIoU, epoch)
self.writer.add_scalar('val/Acc', Acc, epoch)
self.writer.add_scalar('val/Acc_class', Acc_class, epoch)
self.writer.add_scalar('val/fwIoU', FWIoU, epoch)
self.logger.info('Validation:')
self.logger.info('[Epoch: %d, numImages: %5d]' % (epoch, i * self.args.batch_size + target.data.shape[0]))
self.logger.info("Acc:{}, Acc_class:{}, mIoU:{}, fwIoU: {}".format(Acc, Acc_class, mIoU, FWIoU))
self.logger.info('Loss: %.3f' % (test_loss/num_img_val))
new_pred = mIoU
if new_pred > self.best_pred:
is_best = True
self.best_pred = new_pred
self.saver.save_checkpoint({
'epoch': epoch + 1,
'state_dict': self.model.module.state_dict(),
'optimizer': self.optimizer.state_dict(),
'best_pred': self.best_pred,
}, is_best)
def main():
parser = argparse.ArgumentParser(description="PyTorch Event Training")
parser.add_argument('--model', type=str, default='EDCNet',
choices=['EDCNet'], help='model name (default: EDCNet)')
parser.add_argument('--rgb-dim', type=int, default=3,
choices=[0, 3], help='whether use rgb as input (default: 3)')
parser.add_argument('--event-dim', type=int, default=2,
choices=[1, 2, 18], help='event volume dimension (default: 2)')
parser.add_argument('--dataset', type=str, default='cityscapesevent',
choices=['cityscapesevent', 'dadaevent', 'apolloscapeevent', 'bdd', 'kittievent', 'merge3'],
help='dataset name (default: cityscapesevent)')
parser.add_argument('--use-sbd', action='store_true', default=True,
help='whether to use SBD dataset when pascal (default: True)')
parser.add_argument('--workers', type=int, default=4,
metavar='N', help='dataloader threads')
parser.add_argument('--base-size', type=int, default=1024,
help='base image size')
parser.add_argument('--crop-size', type=int, default=(512, 1024),
help='crop image size')
parser.add_argument('--loss-type', type=str, default='focal',
choices=['ce', 'focal', 'ohem'],
help='loss func type (default: ce)')
# training hyper params
parser.add_argument('--epochs', type=int, default=200, metavar='N',
help='number of epochs to train (default: auto)')
parser.add_argument('--start_epoch', type=int, default=0,
metavar='N', help='start epochs (default:0)')
parser.add_argument('--batch-size', type=int, default=4,
metavar='N', help='input batch size for training (default: auto)')
parser.add_argument('--val-batch-size', type=int, default=2,
metavar='N', help='input batch size for testing (default: auto)')
parser.add_argument('--test-batch-size', type=int, default=1,
metavar='N', help='input batch size for testing (default: auto)')
parser.add_argument('--use-balanced-weights', action='store_true', default=True,
help='whether to use balanced weights (default: True)')
# optimizer params
parser.add_argument('--lr', type=float, default=1e-4, metavar='LR',
help='learning rate (default: auto)')
parser.add_argument('--lr-scheduler', type=str, default='cos',
choices=['poly', 'step', 'cos'],
help='lr scheduler mode: (default: cos)')
parser.add_argument('--momentum', type=float, default=0.9,
metavar='M', help='momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=2.5e-5,
metavar='M', help='w-decay (default: 5e-4)')
# cuda, seed and logging
parser.add_argument('--gpu-ids', type=str, default='0,1',
help='must be a comma-separated list of integers only (default=0)')
parser.add_argument('--device', type=torch.device, default='cpu',
help='torch device')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
# checking point
parser.add_argument('--resume', type=str, default=None,
help='put the path to resuming file if needed')
parser.add_argument('--checkname', type=str, default='test_EDCNet_r18',
help='set the checkpoint name, folder to store output')
# finetuning pre-trained models
parser.add_argument('--ft', action='store_true', default=False,
help='finetuning on a different dataset')
# evaluation option
parser.add_argument('--eval-interval', type=int, default=2,
help='evaluuation interval (default: 1)')
parser.add_argument('--no-val', action='store_true', default=False,
help='skip validation during training')
args = parser.parse_args()
args.cuda = torch.cuda.is_available()
if args.cuda:
try:
args.gpu_ids = [int(s) for s in args.gpu_ids.split(',')]
args.device = torch.device('cuda', args.gpu_ids[0])
except ValueError:
raise ValueError('Argument --gpu_ids must be a comma-separated list of integers only')
if args.epochs is None:
epoches = {
'cityscapesevent': 200,
'dadaevent': 200,
'apolloscapeevent': 100
}
args.epochs = epoches[args.dataset.lower()]
if args.batch_size is None:
args.batch_size = 2 * len(args.gpu_ids)
if args.test_batch_size is None:
args.test_batch_size = args.batch_size
if args.lr is None:
lrs = {
'cityscapesevent': 0.0001,
'dadaevent': 0.0001,
'apolloscapeevent': 0.0001
}
args.lr = lrs[args.dataset.lower()] / (4 * len(args.gpu_ids)) * args.batch_size
if args.checkname is None:
args.checkname = 'EDCNet'
print(args)
torch.manual_seed(args.seed)
trainer = Trainer(args)
print('Starting Epoch:', trainer.args.start_epoch)
print('Total Epoches:', trainer.args.epochs)
for epoch in range(trainer.args.start_epoch, trainer.args.epochs):
trainer.training(epoch)
if not trainer.args.no_val and epoch % args.eval_interval == (args.eval_interval - 1):
trainer.validation(epoch)
trainer.writer.close()
if __name__ == "__main__":
main()