forked from Qiskit/qiskit-qasm3-import
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_convert.py
1203 lines (992 loc) · 28 KB
/
test_convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This code is part of Qiskit.
#
# (C) Copyright IBM 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may obtain a copy of this license
# in the LICENSE file in the root directory of this source tree or at
# http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this copyright notice, and modified
# files need to carry a notice indicating that they have been altered from the originals.
import math
import numpy as np
import pytest
from qiskit.circuit import (
QuantumCircuit,
QuantumRegister,
ClassicalRegister,
Clbit,
Qubit,
)
from qiskit.quantum_info import Operator
from qiskit.transpiler import TranspileLayout, Layout
from qiskit_qasm3_import import parse, ConversionError
def test_readme_circuit():
# No real test here as there's too much variance in the control-flow builders, and it's tricky
# to make things like the `Parameter` instances do the equality checks we want. This is just to
# test that the circuit in the README can parse and convert.
source = """
OPENQASM 3.0;
// The 'stdgates.inc' is supported, and the gates are only available if it
// has correctly been included.
include "stdgates.inc";
// Parametrised inputs are supported.
input float[64] a;
qubit[3] q;
bit[2] mid;
bit[3] out;
// Aliasing and re-aliasing are supported.
let aliased = q[0:1];
// Parametrised gates that make use of the stdlib.
gate my_gate(a) c, t {
gphase(a / 2);
ry(a) c;
cx c, t;
}
// Gate modifiers work as well; this gate is equivalent to `p(-a) c;`.
gate my_phase(a) c {
ctrl @ inv @ gphase(a) c;
}
// We handle mathematical expressions on gate creation and complex indexing
// of temporary collections.
my_gate(a * 2) aliased[0], q[{1, 2}][0];
measure q[0] -> mid[0];
measure q[1] -> mid[1];
while (mid == "00") {
reset q[0];
reset q[1];
my_gate(a) q[0], q[1];
// We support the builtin mathematical symbols.
my_phase(a - pi/2) q[1];
mid[0] = measure q[0];
mid[1] = measure q[1];
}
// The condition resolver can also handle simple cases that don't look
// _exactly_ like equality conditions.
if (mid[0]) {
// There is limited support for aliasing within nested scopes.
let inner_alias = q[{0, 1}];
reset inner_alias;
}
out = measure q;
"""
parse(source)
def test_readme_circuit_physical_qubits():
source = """
OPENQASM 3.0;
include "stdgates.inc";
input float[64] a;
bit[2] mid;
bit[3] out;
gate my_gate(a) c, t {
gphase(a / 2);
ry(a) c;
cx c, t;
}
gate my_phase(a) c {
ctrl @ inv @ gphase(a) c;
}
my_gate(a * 2) $0, $1;
measure $0 -> mid[0];
measure $1 -> mid[1];
while (mid == "00") {
reset $0;
reset $1;
my_gate(a) $0, $1;
my_phase(a - pi/2) $1;
mid[0] = measure $0;
mid[1] = measure $1;
}
out[0] = measure $0;
out[1] = measure $1;
out[2] = measure $2;
"""
parse(source)
def test_include_rejects_non_stdgates():
source = "include 'unknown.qasm';"
with pytest.raises(ConversionError, match="non-stdgates imports not currently supported"):
parse(source)
def test_include_stdgates():
source = """
include 'stdgates.inc';
qubit q;
h q;
"""
qc = parse(source)
expected = QuantumCircuit([Qubit()])
expected.h(0)
assert qc == expected
def test_stdgates_not_implicitly_included():
source = """
qubit q;
h q;
"""
with pytest.raises(ConversionError, match="gate 'h' is not defined"):
parse(source)
def test_undefined_symbol():
source = """
gate my_gate q {
U(0, new_symbol, 0) q;
}
"""
with pytest.raises(ConversionError, match="Undefined symbol 'new_symbol'"):
parse(source)
def test_qubit_declarations():
source = """
qubit q;
qubit[5] q1;
qreg q2[3];
"""
qc = parse(source)
expected = QuantumCircuit([Qubit()], QuantumRegister(5, "q1"), QuantumRegister(3, "q2"))
assert len(qc.qubits) == 9
assert qc.qregs == expected.qregs
for left, right in zip(qc.qubits, expected.qubits):
assert qc.find_bit(left) == expected.find_bit(right)
def test_undeclared_physical_qubit():
source = """
reset $1;
"""
qc = parse(source)
expected = QuantumCircuit([Qubit(), Qubit()])
expected.reset(1)
assert len(qc.qubits) == len(expected.qubits)
assert qc.qregs == expected.qregs
assert qc == expected
def test_undeclared_physical_qubits_with_gaps():
"""We should output a circuit that has as many qubits as the highest physical qubit used, since
Qiskit only represents physical qubits by integer indices."""
source = """
include "stdgates.inc";
bit[2] c;
h $3;
cx $5, $3;
c[0] = measure $3;
c[1] = measure $5;
"""
qc = parse(source)
expected = QuantumCircuit([Qubit() for _ in range(6)], ClassicalRegister(2, "c"))
expected.h(3)
expected.cx(5, 3)
expected.measure([3, 5], [0, 1])
assert qc == expected
# Note we have to use the 'Qubit' instances of the parsed circuit when comparing layouts, since
# that's outside the context of the full comparison.
expected_layout = TranspileLayout(
initial_layout=Layout.from_qubit_list(qc.qubits),
input_qubit_mapping={bit: i for i, bit in enumerate(qc.qubits)},
final_layout=None,
)
assert qc.layout == expected_layout
def test_undeclared_physical_qubits_in_control_flow():
source = """
include "stdgates.inc";
bit[2] c;
if (c[0]) {
h $7;
}
while (c == 0) {
while (!c[0]) {
h $3;
cx $3, $9;
c[0] = measure $3;
c[1] = measure $9;
}
}
h $9;
"""
qc = parse(source)
cr = ClassicalRegister(2, "c")
expected = QuantumCircuit([Qubit() for _ in range(10)], cr)
with expected.if_test((cr[0], True)):
expected.h(7)
with expected.while_loop((cr, 0)):
with expected.while_loop((cr[0], False)):
expected.h(3)
expected.cx(3, 9)
expected.measure([3, 9], [0, 1])
expected.h(9)
assert qc == expected
expected_layout = TranspileLayout(
initial_layout=Layout.from_qubit_list(qc.qubits),
input_qubit_mapping={bit: i for i, bit in enumerate(qc.qubits)},
final_layout=None,
)
assert qc.layout == expected_layout
def test_physical_qubit_stdgates():
source = """
include 'stdgates.inc';
h $0;
"""
qc = parse(source)
expected = QuantumCircuit([Qubit()])
expected.h(0)
assert qc == expected
def test_clbit_declarations():
source = """
bit c;
bit[5] c1;
creg c2[3];
"""
qc = parse(source)
expected = QuantumCircuit([Clbit()], ClassicalRegister(5, "c1"), ClassicalRegister(3, "c2"))
assert len(qc.clbits) == 9
assert qc.cregs == expected.cregs
for left, right in zip(qc.clbits, expected.clbits):
assert qc.find_bit(left) == expected.find_bit(right)
def test_bad_declaration_types_raise():
source = """
int x;
"""
with pytest.raises(ConversionError, match="declarations of type 'int' are not supported"):
parse(source)
def test_clbit_declaration_measurement():
source = """
qubit q;
bit c = measure q;
"""
qc = parse(source)
expected = QuantumCircuit([Qubit(), Clbit()])
expected.measure(0, 0)
assert qc == expected
def test_declaration_initializers_raise():
source = """
bit c = 0;
"""
with pytest.raises(ConversionError, match="initialisation of classical bits is not supported"):
parse(source)
def test_output_keyword_rejected():
source = """
output bit c;
"""
with pytest.raises(ConversionError, match="the 'output' keyword is not supported"):
parse(source)
def test_input_allows_only_supported_types():
source = """
input bit c;
"""
with pytest.raises(ConversionError, match="only .* inputs are supported"):
parse(source)
def test_input_defines_parameter():
source = """
input float a;
qubit q;
U(a, a, a) q;
"""
qc = parse(source)
assert len(qc.parameters) == 1
assert qc.parameters[0].name == "a"
p = qc.parameters[0]
expected = QuantumCircuit([Qubit()])
expected.u(p, p, p, 0)
assert qc == expected
def test_unused_input_defines_parameter():
source = """
input float a;
"""
qc = parse(source)
assert len(qc.parameters) == 1
assert qc.parameters[0].name == "a"
def test_invalid_register_names_are_escaped():
"""Terra as of 0.22 only allows registers with valid OQ2 identifiers as names. This restriction
may be relaxed following Qiskit/qiskit-terra#9100."""
source = """
bit[2] _prefix_invalid;
qubit[2] invalid_char_π;
_prefix_invalid = measure invalid_char_π;
"""
qc = parse(source)
assert len(qc.cregs) == 1
assert len(qc.clbits) == 2
assert len(qc.qregs) == 1
assert len(qc.qubits) == 2
expected = QuantumCircuit(qc.qregs[0], qc.cregs[0])
expected.measure(expected.qubits, expected.clbits)
assert qc == expected
def test_register_sizes_fold_constants():
source = """
bit[2 * 4 + 8] c;
qubit[8 / 2 - 1] q;
"""
qc = parse(source)
assert qc.cregs == [ClassicalRegister(16, "c")]
assert qc.qregs == [QuantumRegister(3, "q")]
def test_register_sizes_reject_bad_types():
source = """
bit[3.0] c;
"""
with pytest.raises(ConversionError, match="required a constant integer"):
parse(source)
def test_only_global_declarations():
source = """
for int x in {2, 3} {
bit[1] c;
}
"""
with pytest.raises(ConversionError, match="only global declarations are supported"):
parse(source)
def test_no_rebinding_in_global_scope():
source = """
include 'stdgates.inc';
qubit p;
"""
with pytest.raises(ConversionError, match="already inserted in symbol table"):
parse(source)
def test_basic_gate_definition():
source = """
include 'stdgates.inc';
qubit[2] q;
gate my_gate q0, q1 {
h q0;
cx q0, q1;
}
my_gate q[0], q[1];
"""
qc = parse(source)
assert len(qc.data) == 1
assert qc.data[0].operation.name == "my_gate"
assert qc.data[0].qubits == tuple(qc.qubits)
expected = QuantumCircuit([Qubit(), Qubit()])
expected.h(0)
expected.cx(0, 1)
assert qc.data[0].operation.definition == expected
def test_parameter_shadows_global_1():
source = """
include 'stdgates.inc';
qubit q;
gate my_gate(p) q0 {
U(0, p, 0) q0;
}
my_gate(4.5) q;
"""
qc = parse(source)
expected = QuantumCircuit([Qubit()])
expected.u(0, 4.5, 0, 0)
assert qc.data[0].operation.definition == expected
def test_parameter_shadows_global_2():
source = """
include 'stdgates.inc';
qubit q;
gate my_gate(p) q0 {
U(0, p, 0) q0;
p q0;
}
"""
with pytest.raises(ConversionError, match="not a gate"):
parse(source)
def test_parameter_shadows_builtin():
source = """
include 'stdgates.inc';
qubit q;
gate my_gate(pi) q0 {
U(0, pi, 0) q0;
}
my_gate(4.5) q;
"""
qc = parse(source)
expected = QuantumCircuit([Qubit()])
expected.u(0, 4.5, 0, 0)
assert qc.data[0].operation.definition == expected
def test_input_shadows_builtin():
source = """
input float euler;
qubit q;
U(euler, euler, euler) q;
"""
with pytest.raises(
ConversionError, match="Symbol 'euler' already inserted in symbol table in this scope"
):
parse(source)
# qc = parse(source)
# assert len(qc.parameters) == 1
# assert qc.parameters[0].name == "euler"
# p = qc.parameters[0]
# expected = QuantumCircuit([Qubit()])
# expected.u(p, p, p, 0)
# assert qc == expected
def test_parametrised_gate_definition():
source = """
include 'stdgates.inc';
qubit[2] q;
gate my_gate(p) q0, q1 {
U(0, p, 0) q0;
cx q0, q1;
}
my_gate(4.5) q[0], q[1];
"""
qc = parse(source)
assert len(qc.data) == 1
assert qc.data[0].operation.name == "my_gate"
assert qc.data[0].qubits == tuple(qc.qubits)
expected = QuantumCircuit([Qubit(), Qubit()])
expected.u(0, 4.5, 0, 0)
expected.cx(0, 1)
assert qc.data[0].operation.definition == expected
def test_parametrised_gate_without_use():
# Test that a gate parametrised on an angle that's not actually used in the gate body works.
source = """
include 'stdgates.inc';
qubit q;
gate my_gate(p) a {
x a;
}
my_gate(0.5) q;
"""
qc = parse(source)
assert len(qc.data) == 1
assert qc.data[0].operation.name == "my_gate"
assert qc.data[0].qubits == tuple(qc.qubits)
def test_gate_cannot_redefine():
source = """
gate x q {
}
gate x q {
}
"""
with pytest.raises(ConversionError, match="'x' is already defined"):
parse(source)
def test_global_phase():
source = """
qubit q;
gphase(2);
"""
qc = parse(source)
assert len(qc.data) == 0
assert qc.global_phase == 2
def test_broadcast_global_phase():
source = """
qubit[2] q;
ctrl @ gphase(2) q;
"""
qc = parse(source)
assert len(qc.data) == 2
assert qc.data[0].operation == qc.data[1].operation
expected = QuantumCircuit(2)
expected.p(2, expected.qubits)
assert Operator(qc) == Operator(expected)
def test_inverse_global_phase():
source = """
qubit q;
inv @ gphase(1.5);
"""
qc = parse(source)
assert len(qc.data) == 0
assert qc.global_phase == 2 * math.pi - 1.5
def test_gate_definition_scope_limited():
source = """
input float x;
gate my_gate q {
U(x, 0, 0) q;
}
"""
with pytest.raises(ConversionError, match="not visible in the scope of a"):
parse(source)
def test_gate_call_rejects_nongate():
source = """
input float x;
qubit q;
x q;
"""
with pytest.raises(ConversionError, match="'x' is a 'float', not a gate"):
parse(source)
def test_control_modifier():
source = """
include "stdgates.inc";
qubit[3] q;
ctrl @ x q[0], q[1];
ctrl(2) @ x q[0], q[1], q[2];
ctrl @ ctrl @ x q[0], q[1], q[2];
negctrl @ x q[0], q[1];
"""
qc = parse(source)
expected = QuantumCircuit(QuantumRegister(3, "q"))
expected.cx(0, 1)
expected.ccx(0, 1, 2)
expected.ccx(0, 1, 2)
expected.cx(0, 1, ctrl_state=0)
assert qc == expected
def test_pow_modifier():
source = """
include "stdgates.inc";
qubit q;
pow(2) @ z q;
"""
qc = parse(source)
assert Operator(qc) == Operator(np.eye(2))
def test_pow_modifier_rejects_bad_types():
source = """
include "stdgates.inc";
qubit q;
pow(12dt) @ z q;
"""
with pytest.raises(ConversionError, match="required a constant floating-point number"):
parse(source)
def test_gate_broadcast():
source = """
include "stdgates.inc";
qubit[2] q;
qubit[2] p0;
cx q[0], p0;
cx q, p0;
cx q, p0[0];
"""
qc = parse(source)
q, p = QuantumRegister(2, "q"), QuantumRegister(2, "p0")
expected = QuantumCircuit(q, p)
expected.cx(q[0], p)
expected.cx(q, p)
expected.cx(q, p[0])
assert qc == expected
# We need to be safe in the event of mutation. We can be safe either if the object is
# immutable, or if it's mutable but only present once in the circuit.
num_safe_mutate = 0
unsafe_mutate_indices = []
refs = set()
for i, instruction in enumerate(qc.data):
# Be careful: the `mutable` attribute is only Qiskit 0.45+.
if getattr(instruction.operation, "mutable", True):
if id(instruction.operation) in refs:
unsafe_mutate_indices.append(i)
else:
num_safe_mutate += 1
refs.add(id(instruction.operation))
else:
num_safe_mutate += 1
assert not unsafe_mutate_indices
assert num_safe_mutate == len(qc.data)
def test_gate_broadcast_rejects_bad_lengths():
source = """
include "stdgates.inc";
qubit[2] q;
qubit[3] p0;
cx q, p0;
"""
with pytest.raises(ConversionError, match="mismatched lengths in gate broadcast"):
parse(source)
def test_gate_rejects_bad_types():
source = """
input angle q;
U(0, 0, 0) q;
"""
with pytest.raises(ConversionError, match="required a qubit"):
parse(source)
def test_gate_rejects_bad_parameter_types():
source = """
qubit q;
U(12dt, 0, 0) q;
"""
with pytest.raises(ConversionError, match="required an angle-like value"):
parse(source)
def test_gate_rejects_incorrect_parameters():
source = """
gate my_gate(p) q {
}
qubit q;
my_gate q;
"""
with pytest.raises(ConversionError, match="incorrect number of parameters in call"):
parse(source)
source = """
gate my_gate(p) q {
}
qubit q;
my_gate(0.2, 0.3) q;
"""
with pytest.raises(ConversionError, match="incorrect number of parameters in call"):
parse(source)
def test_basic_measurement():
source = """
bit[2] c;
qubit[2] q;
c = measure q;
c[0] = measure q[0];
measure q[1] -> c[1];
"""
qc = parse(source)
expected = QuantumCircuit(ClassicalRegister(2, "c"), QuantumRegister(2, "q"))
expected.measure([0, 1], [0, 1])
expected.measure(0, 0)
expected.measure(1, 1)
assert qc == expected
def test_measure_rejects_no_store():
source = """
qubit q;
measure q;
"""
with pytest.raises(ConversionError, match="measurements must save their result"):
parse(source)
def test_measure_rejects_bad_types():
source = """
input angle q;
bit c;
c = measure q;
"""
with pytest.raises(ConversionError, match="required a qubit"):
parse(source)
source = """
input angle c;
qubit q;
c = measure q;
"""
with pytest.raises(ConversionError, match="required a bit"):
parse(source)
def test_barrier():
source = """
qubit q;
qubit[2] qr;
barrier q;
barrier qr;
barrier;
"""
qc = parse(source)
expected = QuantumCircuit([Qubit()], QuantumRegister(2, name="qr"))
expected.barrier(0)
expected.barrier([1, 2])
expected.barrier()
assert qc == expected
def test_barrier_rejects_bad_types():
source = """
bit c;
barrier c;
"""
with pytest.raises(ConversionError, match="required a qubit"):
parse(source)
def test_reset():
source = """
qubit q;
qubit[2] qr;
reset q;
reset qr;
"""
qc = parse(source)
expected = QuantumCircuit([Qubit()], QuantumRegister(2, name="qr"))
expected.reset(0)
expected.reset([1, 2])
assert qc == expected
def test_reset_rejects_bad_types():
source = """
bit c;
reset c;
"""
with pytest.raises(ConversionError, match="required a qubit"):
parse(source)
def test_delay():
source = """
qubit q;
qubit[2] qr;
delay[10dt] q;
delay[1s] qr;
delay[1.5ms];
"""
qc = parse(source)
expected = QuantumCircuit([Qubit()], QuantumRegister(2, name="qr"))
expected.delay(10, 0, unit="dt")
expected.delay(1, [1, 2], unit="s")
expected.delay(1.5, unit="ms")
assert qc == expected
def test_delay_rejects_bad_arguments():
source = """
qubit q;
delay[5] q;
"""
with pytest.raises(ConversionError, match="required a constant duration"):
parse(source)
def test_delay_rejects_bad_types():
source = """
bit c;
delay[5dt] c;
"""
with pytest.raises(ConversionError, match="required a qubit"):
parse(source)
def test_break():
source = """
bit c;
while (c) {
break;
}
"""
qc = parse(source)
expected = QuantumCircuit([Clbit()])
with expected.while_loop((expected.clbits[0], True)):
expected.break_loop()
assert qc == expected
def test_continue():
source = """
bit c;
while (c) {
continue;
}
"""
qc = parse(source)
expected = QuantumCircuit([Clbit()])
with expected.while_loop((expected.clbits[0], True)):
expected.continue_loop()
assert qc == expected
@pytest.mark.parametrize(
("condition", "value"),
(("c", True), ("c == true", True), ("c == false", False), ("~c", False), ("true != c", False)),
)
def test_if_bit(condition, value):
source = f"""
qubit q;
bit c;
if ({condition}) {{
U(0, 0, 0) q;
}}
"""
qc = parse(source)
expected = QuantumCircuit([Qubit(), Clbit()])
with expected.if_test((0, value)):
expected.u(0, 0, 0, 0)
assert qc == expected
@pytest.mark.parametrize(
("condition", "value"),
(('cr == "00"', 0), ('"00" == cr', 0), ('cr == "11"', 3)),
)
def test_if_register(condition, value):
source = f"""
qubit q;
bit[2] cr;
if ({condition}) {{
U(0, 0, 0) q;
}}
"""
qc = parse(source)
expected = QuantumCircuit([Qubit()], ClassicalRegister(2, "cr"))
with expected.if_test((expected.cregs[0], value)):
expected.u(0, 0, 0, 0)
assert qc == expected
def test_if_implicit_register():
source = """
qubit q;
bit[2] cr;
if (cr[1:-1:0] == "00") {
U(0, 0, 0) q;
}
"""
qc = parse(source)
assert len(qc.cregs) == 2
expected = QuantumCircuit([Qubit()], *qc.cregs)
with expected.if_test((expected.cregs[1], 0)):
expected.u(0, 0, 0, 0)
assert qc == expected
def test_if_else():
source = """
qubit q;
bit c;
if (c) {
U(0, 0, 0) q;
} else {
U(1.5, 1, -1) q;
}
"""
qc = parse(source)
expected = QuantumCircuit([Qubit(), Clbit()])
with expected.if_test((0, True)) as else_:
expected.u(0, 0, 0, 0)
with else_:
expected.u(1.5, 1, -1, 0)
assert qc == expected
def test_if_else_does_not_share_scope():
source = """
include 'stdgates.inc';
qubit[2] q;
bit c;
if (c) {
let q1 = q[0:0];
x q1;
} else {
x q1;
}
"""
with pytest.raises(ConversionError, match="Undefined symbol 'q1'"):
parse(source)
def test_if_does_not_leak_scope():
source = """
include 'stdgates.inc';
qubit[2] q;
bit c;
if (c) {
let q1 = q[0:0];
x q1;
}
x q1;
"""
with pytest.raises(ConversionError, match="Undefined symbol 'q1'"):
parse(source)
@pytest.mark.parametrize(
("condition", "value"),
(("c", True), ("c == true", True), ("c == false", False), ("~c", False), ("true != c", False)),
)
def test_while_bit(condition, value):
source = f"""
qubit q;
bit c;
while ({condition}) {{
U(0, 0, 0) q;
}}
"""