@@ -86,22 +86,16 @@ BDD <- function(indata, scale = 1, B = 0, nrepeat, tun.B, tun.al, tun.be,
86
86
# This function calculates kappa Eq. (5) and Eq. (6) in Supplement and gamma_k(m, Delta) in page 3.
87
87
# Returning the cumulative sum of kappa: sum_{m=0}^{i}kappa(delta,m) in Eq. (6) in Supplement.
88
88
# P: shape parameter alpha and rate parameter of beta in gamma delay distribution.
89
- KI <- function (P ,ti = time ) {
90
- a <- P [1 ] # shape parameter alpha of gamma distribution in Eq. (5) and Eq. (6) in Supplement
91
- b <- P [2 ] # rate parameter beta of gamma distribution in Eq. (5) and Eq. (6) in Supplement .
92
- kappa <- rep(0 , ti )
93
- for (m in 2 : ti ) { # discretized integral kappa(delta, m) of Eq. (5) and Eq. (6) in Supplement
94
- kappa [m ] = pgamma((m - 0.5 ),a , rate = b ) - pgamma(((m - 1 )- 0.5 ), a , rate = b )
95
- }
96
- kappa [1 ] = pgamma(0.5 , a , rate = b )
97
- k.j <- rep(1 , ti ) # cumulative sum of kappa until i
98
- for (m in 1 : ti ) {
99
- k.all <- 0
100
- for (j in 1 : m ) k.all <- k.all + kappa [j ]
101
- k.j [m ] <- k.all
89
+ KI <- function (P , ti = time ){
90
+ a = P [1 ]; # shape parameter alpha of gamma distribution in Eq. (5) and Eq. (6) in Supplement
91
+ b = P [2 ]; # rate parameter beta of gamma distribution in Eq. (5) and Eq. (6) in Supplement .
92
+ f <- function (x ) pgamma(x ,a ,rate = b )
93
+ k.j = rep(1 ,ti )
94
+ for (m in 1 : ti ){ # discretized integral kappa(delta, m) of Eq. (5) and Eq. (6) in Supplement
95
+ k.j [m ] = integrate(f ,m - 1 ,m )$ value
102
96
}
103
97
return (k.j )
104
- }
98
+ }
105
99
106
100
107
101
0 commit comments