-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathdnc.py
453 lines (391 loc) · 17.4 KB
/
dnc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
# -*- coding: utf-8 -*-
from typing import Any
import torch
import torch.nn as nn
import numpy as np
from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence
from .memory import Memory, MemoryHiddenState
from .sparse_memory import SparseMemory
from .sparse_temporal_memory import SparseTemporalMemory
from .util import cuda
# Define controller hidden state type for clarity
ControllerHiddenState = torch.Tensor | tuple[torch.Tensor, torch.Tensor]
DNCHiddenState = tuple[
list[ControllerHiddenState],
list[MemoryHiddenState],
torch.Tensor,
]
LayerHiddenState = tuple[ControllerHiddenState, MemoryHiddenState, torch.Tensor | None]
class DNC(nn.Module):
"""Differentiable neural computer."""
def __init__(
self,
input_size: int,
hidden_size: int,
rnn_type: str = "lstm",
num_layers: int = 1,
num_hidden_layers: int = 2,
bias: bool = True,
batch_first: bool = True,
dropout: float = 0,
nr_cells: int = 5,
read_heads: int = 2,
cell_size: int = 10,
nonlinearity: str = "tanh",
independent_linears: bool = False,
share_memory_between_layers: bool = True,
debug: bool = False,
clip: float = 20,
device: torch.device | None = None,
):
"""Create a DNC network.
Args:
input_size: Input size.
hidden_size: Size of hidden layers.
rnn_type: Type of recurrent cell, can be `rnn`, `gru` and `lstm`.
num_layers: Number of layers of DNC.
num_hidden_layers: Number of layers of RNNs in each DNC layer.
bias: Whether to use bias.
batch_first: If True, then the input and output tensors are provided as `(batch, seq, feature)`.
dropout: Dropout fraction to be applied to each RNN layer.
nr_cells: Size of memory: number of memory cells.
read_heads: Number of read heads that read from memory.
cell_size:Size of memory: size of each cell.
nonlinearity: The non-linearity to use for RNNs, applicable when `rnn_type="rnn"`.
independent_linears: Use independent linear modules for meomry transform operators.
share_memory_between_layers: Share one memory module between all layers.
debug: Run in debug mode.
clip: Clip controller outputs.
device: Device (cpu, cuda, cuda:0, ...)
"""
super(DNC, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.rnn_type = rnn_type
self.num_layers = num_layers
self.num_hidden_layers = num_hidden_layers
self.bias = bias
self.batch_first = batch_first
self.dropout = dropout
self.nr_cells = nr_cells
self.read_heads = read_heads
self.cell_size = cell_size
self.nonlinearity = nonlinearity
self.independent_linears = independent_linears
self.share_memory_between_layers = share_memory_between_layers
self.debug = debug
self.clip = clip
self.device = device
self.w = self.cell_size
self.r = self.read_heads
self.read_vectors_size = self.read_heads * self.cell_size
self.output_size = self.hidden_size
self.nn_input_size = self.input_size + self.read_vectors_size
self.nn_output_size = self.output_size + self.read_vectors_size
self.rnns: list[nn.RNN | nn.GRU | nn.LSTM] = []
self.memories: list[Memory | SparseMemory | SparseTemporalMemory] = []
for layer in range(self.num_layers):
if self.rnn_type.lower() == "rnn":
self.rnns.append(
nn.RNN(
(self.nn_input_size if layer == 0 else self.nn_output_size),
self.output_size,
bias=self.bias,
nonlinearity=self.nonlinearity,
batch_first=True,
dropout=self.dropout,
num_layers=self.num_hidden_layers,
)
)
elif self.rnn_type.lower() == "gru":
self.rnns.append(
nn.GRU(
(self.nn_input_size if layer == 0 else self.nn_output_size),
self.output_size,
bias=self.bias,
batch_first=True,
dropout=self.dropout,
num_layers=self.num_hidden_layers,
)
)
elif self.rnn_type.lower() == "lstm":
self.rnns.append(
nn.LSTM(
(self.nn_input_size if layer == 0 else self.nn_output_size),
self.output_size,
bias=self.bias,
batch_first=True,
dropout=self.dropout,
num_layers=self.num_hidden_layers,
)
)
setattr(self, self.rnn_type.lower() + "_layer_" + str(layer), self.rnns[layer])
# memories for each layer
if not self.share_memory_between_layers:
self.memories.append(
Memory(
input_size=self.output_size,
nr_cells=self.nr_cells,
cell_size=self.w,
read_heads=self.r,
device=self.device,
independent_linears=self.independent_linears,
)
)
setattr(self, "rnn_layer_memory_" + str(layer), self.memories[layer])
# only one memory shared by all layers
if self.share_memory_between_layers:
self.memories.append(
Memory(
input_size=self.output_size,
nr_cells=self.nr_cells,
cell_size=self.w,
read_heads=self.r,
device=self.device,
independent_linears=self.independent_linears,
)
)
setattr(self, "rnn_layer_memory_shared", self.memories[0])
# final output layer
self.output = nn.Linear(self.nn_output_size, self.input_size)
torch.nn.init.kaiming_uniform_(self.output.weight)
if self.device is not None and self.device.type == "cuda":
self.to(self.device)
def _init_hidden(self, hx: DNCHiddenState | None, batch_size: int, reset_experience: bool) -> DNCHiddenState:
"""Initializes the hidden states.
Args:
hx: Existing hidden state or None.
batch_size: Batch size.
reset_experience: Whether to reset memory experience.
Returns:
Initialized hidden state.
"""
# Parse hidden state components
if hx is not None:
chx, mhx, last_read = hx
else:
chx, mhx, last_read = None, None, None
# Initialize controller hidden state if needed
if chx is None:
h: torch.Tensor = cuda(
torch.zeros(self.num_hidden_layers, batch_size, self.output_size),
device=self.device,
)
torch.nn.init.xavier_uniform_(h)
chx = [(h, h) if self.rnn_type.lower() == "lstm" else h for _ in range(self.num_layers)]
# Initialize last read vectors if needed
if last_read is None:
last_read = cuda(torch.zeros(batch_size, self.w * self.r), device=self.device)
# Initialize memory states if needed
if mhx is None:
if self.share_memory_between_layers:
mhx = [self.memories[0].reset(batch_size, erase=reset_experience)]
else:
mhx = [m.reset(batch_size, erase=reset_experience) for m in self.memories]
else:
if self.share_memory_between_layers:
if len(mhx) == 0 or mhx[0] is None:
mhx = [self.memories[0].reset(batch_size, erase=reset_experience)]
else:
mhx = [self.memories[0].reset(batch_size, mhx[0], erase=reset_experience)]
else:
if len(mhx) == 0:
mhx = [m.reset(batch_size, erase=reset_experience) for m in self.memories]
else:
new_mhx = []
for i, m in enumerate(self.memories):
if i < len(mhx) and mhx[i] is not None:
new_mhx.append(m.reset(batch_size, mhx[i], erase=reset_experience))
else:
new_mhx.append(m.reset(batch_size, erase=reset_experience))
mhx = new_mhx
return chx, mhx, last_read
def _debug(
self, mhx: MemoryHiddenState, debug_obj: dict[str, list[np.ndarray]] | None
) -> dict[str, list[np.ndarray]] | None:
"""Collects debug information. Only returns a debug_obj if self.debug is True.
Args:
mhx: Memory hidden state.
debug_obj: Debug object containing lists of numpy arrays.
Returns:
Debug object or None.
"""
if not self.debug:
return None
if not debug_obj:
debug_obj = {
"memory": [],
"link_matrix": [],
"precedence": [],
"read_weights": [],
"write_weights": [],
"usage_vector": [],
}
debug_obj["memory"].append(mhx["memory"][0].detach().cpu().numpy())
debug_obj["link_matrix"].append(mhx["link_matrix"][0][0].detach().cpu().numpy())
debug_obj["precedence"].append(mhx["precedence"][0].detach().cpu().numpy())
debug_obj["read_weights"].append(mhx["read_weights"][0].detach().cpu().numpy())
debug_obj["write_weights"].append(mhx["write_weights"][0].detach().cpu().numpy())
debug_obj["usage_vector"].append(mhx["usage_vector"][0].unsqueeze(0).detach().cpu().numpy())
return debug_obj
def _layer_forward(
self,
input: torch.Tensor,
layer: int,
hx: LayerHiddenState,
pass_through_memory: bool = True,
) -> tuple[torch.Tensor, LayerHiddenState]:
"""Performs a forward pass through a single layer.
Args:
input : Input tensor.
layer: Layer index.
hx: Hidden state for the layer.
pass_through_memory: Whether to pass the input through memory.
Returns:
Tuple: Output, and updated hidden state.
"""
(chx, mhx, _) = hx
# pass through the controller layer
input, chx = self.rnns[layer](input.unsqueeze(1), chx)
input = input.squeeze(1) # Remove the sequence length dimension (always 1)
# clip the controller output
if self.clip != 0:
output = torch.clamp(input, -self.clip, self.clip)
else:
output = input
# the interface vector
ξ = output
# pass through memory
if pass_through_memory:
if self.share_memory_between_layers:
read_vecs, mhx = self.memories[0](ξ, mhx)
else:
read_vecs, mhx = self.memories[layer](ξ, mhx)
# the read vectors
read_vectors = read_vecs.view(-1, self.w * self.r)
else:
# Initialize read vectors with zeros when not passing through memory
read_vectors = cuda(torch.zeros(ξ.size(0), self.w * self.r), device=self.device)
return output, (chx, mhx, read_vectors)
def forward(
self,
input_data: torch.Tensor | PackedSequence,
hx: DNCHiddenState | None,
reset_experience: bool = False,
pass_through_memory: bool = True,
) -> (
tuple[torch.Tensor | PackedSequence, DNCHiddenState]
| tuple[torch.Tensor | PackedSequence, DNCHiddenState, dict[str, Any]]
):
"""Performs a forward pass through the DNC.
Args:
input_data: Input tensor or PackedSequence.
hx: Hidden state or None.
reset_experience: Whether to reset memory experience.
pass_through_memory: Whether to pass the input through memory.
Returns:
Tuple: Output (same type as input_data), updated hidden state, and optionally debug information.
"""
max_length: int
# handle packed data
if isinstance(input_data, PackedSequence):
input, lengths = pad_packed_sequence(input_data, batch_first=self.batch_first)
max_length = int(lengths.max().item())
elif isinstance(input_data, torch.Tensor):
input = input_data
batch_size = input.size(0) if self.batch_first else input.size(1)
max_length = input.size(1) if self.batch_first else input.size(0)
lengths = torch.tensor([max_length] * batch_size, device=input.device)
else:
raise TypeError("input_data must be a PackedSequence or Tensor")
if not self.batch_first:
input = input.transpose(0, 1)
# make the data time-first
controller_hidden, mem_hidden, last_read = self._init_hidden(hx, batch_size, reset_experience)
# last_read is guaranteed to be initialized by _init_hidden, so no need to check for None
inputs = [torch.cat([input[:, x, :], last_read], 1) for x in range(max_length)]
# batched forward pass per element / word / etc
if self.debug:
viz: dict[str, Any] | None = None
outs: list[torch.Tensor | None] = [None] * max_length
read_vectors: torch.Tensor | None = None
# pass through time
for time in range(max_length):
# pass thorugh layers
for layer in range(self.num_layers):
# this layer's hidden states
chx_layer = controller_hidden[layer]
mem_layer = mem_hidden[0] if self.share_memory_between_layers else mem_hidden[layer]
# pass through controller
outs[time], (
chx_layer_output,
mem_layer_output,
read_vectors,
) = self._layer_forward(
inputs[time], layer, (chx_layer, mem_layer, read_vectors), pass_through_memory # type: ignore
)
# debug memory
if self.debug:
viz = self._debug(mem_layer_output, viz)
# store the memory back (per layer or shared)
if self.share_memory_between_layers:
mem_hidden[0] = mem_layer_output # type: ignore
else:
mem_hidden[layer] = mem_layer_output # type: ignore
controller_hidden[layer] = chx_layer_output
if read_vectors is not None:
# the controller output + read vectors go into next layer
outs[time] = torch.cat([outs[time], read_vectors], 1) # type: ignore
else:
outs[time] = torch.cat([outs[time], last_read], 1) # type: ignore
inputs[time] = outs[time] # type: ignore
if self.debug and viz:
viz = {k: [np.array(v) for v in vs] for k, vs in viz.items()}
viz = {k: [v.reshape(v.shape[0], -1) for v in vs] for k, vs in viz.items()}
# pass through final output layer
inputs_tensor = torch.stack(inputs)
outputs = self.output(inputs_tensor)
if not self.batch_first:
outputs = outputs.transpose(0, 1)
if isinstance(input_data, PackedSequence):
outputs = pack_padded_sequence(outputs, lengths.cpu(), batch_first=self.batch_first, enforce_sorted=False)
if self.debug:
return outputs, (controller_hidden, mem_hidden, read_vectors), viz # type: ignore
else:
return outputs, (controller_hidden, mem_hidden, read_vectors) # type: ignore
def __repr__(self) -> str:
"""Provides a string representation of the DNC module."""
s = "\n----------------------------------------\n"
s += "{name}({input_size}, {hidden_size}"
if self.rnn_type != "lstm":
s += ", rnn_type={rnn_type}"
if self.num_layers != 1:
s += ", num_layers={num_layers}"
if self.num_hidden_layers != 2:
s += ", num_hidden_layers={num_hidden_layers}"
if not self.bias:
s += ", bias={bias}"
if not self.batch_first:
s += ", batch_first={batch_first}"
if self.dropout != 0:
s += ", dropout={dropout}"
if self.nr_cells != 5:
s += ", nr_cells={nr_cells}"
if self.read_heads != 2:
s += ", read_heads={read_heads}"
if self.cell_size != 10:
s += ", cell_size={cell_size}"
if self.nonlinearity != "tanh":
s += ", nonlinearity={nonlinearity}"
if self.independent_linears:
s += ", independent_linears={independent_linears}"
if not self.share_memory_between_layers:
s += ", share_memory_between_layers={share_memory_between_layers}"
if self.debug:
s += ", debug={debug}"
if self.clip != 20:
s += ", clip={clip}"
if self.device:
s += f", device='{self.device}'"
s += ")\n" + super(DNC, self).__repr__() + "\n----------------------------------------\n"
return s.format(name=self.__class__.__name__, **self.__dict__)