-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlecture9.tex
1289 lines (1215 loc) · 46.6 KB
/
lecture9.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%% -*- coding:utf-8 -*-
\chapter{Ring extensions, norms and traces, reduction modulo $p$}
We build a tool for finding elements in Galois groups, learning to use
the reduction modulo $p$. For this, we have to talk a little bit about
integral ring extensions and also about norms and traces.
\section{Integral elements over a ring}
Let $P \in \mathbb{Z}\left[X\right]$. We want to know what is
$Gal\left(P\right)$. Just a reminder that $Gal\left(P\right) =
Gal\left(K/\mathbb{Q}\right)$ where $K$ is a
\mynameref{def:splittingfield} of $P$. We have already done the work for
several types of polynomials: \mynameref{def:cyclotomicpolynomial}s,
\mynameref{sec:kummerextension} and so on.
Sometimes, if our polynomial is a kind of combination of them, then the
explicit information about the roots helps to calculate the Galois
group. For instance if we have polynomial $X^5 - 2$ we know it's
roots: $\sqrt[5]{2}, j^k \sqrt[5]{2}$, where
$j= e^{\frac{2 \pi i}{5}}, 1 \le k \le 4$. Now we have a lot about the
\mynameref{def:galoisgroup}. If $K$ is the splitting field of the
polynomial then we have the following towers:
\begin{tikzpicture}[descr/.style={fill=white,inner sep=2.5pt}]
\matrix (m) [matrix of math nodes, row sep=3em,
column sep=3em]
{ & \mathbb{Q}\left(j\right) & \\
\mathbb{Q} & & \mathbb{Q}\left(\sqrt[5]{2}, j\right) = K\\
& \mathbb{Q}\left(\sqrt[5]{2}\right) & \\ };
\path[->,font=\scriptsize]
(m-2-1) edge node[descr] {$ 4 $} (m-1-2)
(m-1-2) edge node[descr] {$ 5 $} (m-2-3)
(m-2-1) edge node[descr] {$ 5 $} (m-3-2)
(m-3-2) edge node[descr] {$ 4 $} (m-2-3);
\end{tikzpicture}
From that we know we can conclude that it follows that our Galois
group, contains a normal cyclic subgroup of a order 5:
$\mathbb{Z}/5\mathbb{Z}$.
\footnote{
We have the following towers:
$\mathbb{Q} \subset \mathbb{Q}\left(j\right) \subset
\mathbb{Q}\left(j, \sqrt[5]{2}\right) = K$, where
$\mathbb{Q}\left(j\right)$ and $\mathbb{Q}\left(j,
\sqrt[5]{2}\right)$ are \mynameref{def:galoisextension}s.
By \mynameref{thm:galoiscorrespondence} one can get that
\[
Gal\left(K/\mathbb{Q}\left(j\right)\right) \triangleleft
Gal\left(K/\mathbb{Q}\right) = Gal\left(P\right).
\]
As soon as (see theorem \ref{thm:lec5_4}),
\[
\left|Gal\left(K/\mathbb{Q}\left(j\right)\right)\right| =
\left[K:\mathbb{Q}\left(j\right)\right] = 5,
\]
the $Gal(P)$ has a normal subgroup of order 5.
}
And then
the quotient is the Galois group of cyclotomic extension
\footnote{
The quotient is
\[
Gal\left(K/\mathbb{Q}\right)/Gal\left(K/\mathbb{Q}\left(j\right)\right).
\]
It has order $20/5=4$ and therefore it is
$\left(\mathbb{Z}/5\mathbb{Z}\right)^\times$. It is also
(see claim \ref{claim:galoisquotient})
$Gal\left(\mathbb{Q}\left(j\right)/\mathbb{Q}\right)$
}
, so this is
$\left(\mathbb{Z}/5\mathbb{Z}\right)^\times$.
So this is a group of
order 20.
\footnote{
There is a General affine group:
$Gal(P) \cong GA(1,5) \triangleleft S_5$
\cite{groupwiki:s5structure, groupwiki:generalaffinegroup}
}
You can show that this
is noncommutative, and from this exact sequence, you have some
information about it. But what will we do if we don't know the
roots. One of the tool that we will use is the reduction of modulo
prime and this will be the subject of the lecture.
\begin{gapexample}[Galois group]
Let investigate the \mynameref{def:galoisgroup}
$Gal\left(K/\mathbb{Q}\right)$ via GAP:
\begin{verbatim}
gap> x:=Indeterminate(Rationals,"x");;
gap> n:=5;;
gap> i:=GaloisType(x^n-2);;
gap> g:=TransitiveGroup(n,i);;
gap> g;
F(5) = 5:4
gap> Order(g);
20
\end{verbatim}
\end{gapexample}
\subsection{Ring extensions}
\begin{definition}[Integral element]
Let $A$ be an \mynameref{def:integraldomain}, i.e. a ring without zero
divisors and let $B$ is an extension of $A$. The element $\alpha
\in B$ is called integral over $A$ if $\alpha$ is a root of a
\mynameref{def:monicpolynomial} $P \in A\left[X\right]$.
So one can write the following relation
\[
\alpha^n + a_{n-1}\alpha^{n-1} + \dots + a_1 \alpha + a_0 = 0, a_i
\in A.
\]
\label{def:integralelement}
\end{definition}
\begin{example}
$\frac{1}{2}$ is not integral element over $\mathbb{Z}$ but
$\sqrt{2}$ is an \mynameref{def:integralelement} over $\mathbb{Z}$.
This is because the polynomial in the definition
\ref{def:integralelement} is monic i.e. the leading coefficient is
1.
\end{example}
\begin{lemma}
The following conditions are equvivalent
\begin{enumerate}
\item $\alpha$ is integral over $A$.
\item $A\left[\alpha\right]$ is a finitely generated $A$-module
(see definition \ref{def:fgmodule}).
\item $A\left[\alpha\right] \subset C \subset B$ where $C$ is a a
finitely generated
$A$-module (see definition \ref{def:fgmodule}). I.e.
$A\left[\alpha\right]$ is contained in a finitely generated $A$-module.
\end{enumerate}
\label{lem:lec9_1}
\begin{proof}
$1 \to 2 \to 3$ is easy
\footnote{
$1 \to 2$ is really easy because the finite set $\{1,\alpha,
\dots, \alpha^{n-1}\}$ generates
$A\left[\alpha\right]$ i.e.
$\forall x \in A\left[\alpha\right], \exists \{x_i\}
\subset A$ such that $x = \sum_{i=0}^{n-1} x_i \alpha^{i}$.
$2 \to 3$ is even more easy because $C=A\left[\alpha\right]$ will work.
} and we will concentrate on $3 \to 1$.
Let $x_1, \dots, x_r$ generate $C$ as $A$-module then we can write
\footnote{
As soon as $\alpha x_i \in C$ is an element of $C$ that can be written
as a linear combination of
$x_1, \dots, x_r$ with coefficients from $A$.
}
\[
\alpha x_i = \sum \lambda_{ij}x_j,
\]
where $\lambda_{ij} \in A$. Consider the matrix
$\Lambda = \{\lambda_{ij}\}$ and let $M = \alpha \cdot id -
\Lambda$. Then
\[
M \cdot
\begin{pmatrix}
x_1 \\ \vdots \\ x_r
\end{pmatrix} = 0.
\]
Thus (see (\ref{eq:lec4_det}) at theorem
\ref{thm:structurefinitekalgebra} proof)
\[
\det M \cdot
\begin{pmatrix}
x_1 \\ \vdots \\ x_r
\end{pmatrix} = 0.
\]
Therefore $\det M \cdot C = 0$ but $1 \in C$ thus $\det M = 0$.
\footnote{
There is a question why do we need $\det M \cdot C = 0$, may be
we can directly write $\det M = 0$? Staff provided a good
example why it's necessary: Sending generators to zero is not
sufficient for having zero determinant. For example, consider a
ring $A$, its ideal $I \subset A$ and $A/I$ as a
$A$-\mynameref{def:cyclicmodule} i.e. module with one generator.
If $x \in A$ is the generator then we can just say that $\det M x
\in I$ and as result $\det M$ not necessary to be zero.
}
The equation $\det M = 0$ can be considered as a polynomial with
$\alpha$ as a root.
\footnote{
The polynomial will be a \mynameref{def:monicpolynomial} because
the matrix element can have $\alpha$ with coefficient equal $1$.
}
\end{proof}
\end{lemma}
\section{Integral extensions, integral closure, ring of integers of a
number field}
\subsection{Integral extensions and integral closure}
\begin{definition}[Integral extension]
Let $A \subset B$. $B$ is integral over $A$ if $\forall \alpha \in
B$, $\alpha$ is an \mynameref{def:integralelement} over $A$.
\label{def:integralextension}
\end{definition}
The following proposition is not a part of the lectures but it is
required for propositions \ref{prop:lec9_1} and \ref{prop:lec9_2}
proof.
\begin{proposition}
Let $A$ is a sub-ring of $C$ and
$\alpha_1, \alpha_2, \dots, \alpha_n \in C$,
$\alpha_1$ is an integral over $A$,
$\alpha_2$ is an integral over $A\left[\alpha_1\right]$, and so on,
$\alpha_n$ is an integral over
$A\left[\alpha_1, \alpha_2, \dots, \alpha_{n-1}\right]$ then
$A\left[\alpha_1, \alpha_2, \dots,\alpha_{n}\right]$ is a finitely
generated $A$ module.
\begin{proof}
Lets proof by induction. The case $n=1$ follows directly from
lemma \ref{lem:lec9_1}.
Induction hypothesis gives us that
$B = A\left[\alpha_1, \alpha_2, \dots,\alpha_{n-1}\right]$ is a finitely
generated $A$ module and we have to prove that
$S = A\left[\alpha_1, \alpha_2, \dots, \alpha_{n}\right]$ is a finitely
generated $A$ module.
For $B$ as a finitely generated $A$ module we have
\[
B = \sum_i A b_i,
\]
but $S = B\left[\alpha_n\right]$ is a finitely generated $B$
module (thanks lemma \ref{lem:lec9_1}) and therefore
\[
S = \sum_j B s_j
\]
and as result
\[
S = \sum_{ij} A b_i s_j =
\sum_{ij} A k_{ij}
\]
where $b_i s_j = k_{ij} \in S$ form a finite set of generators for $S$.
\end{proof}
\label{prop:lec9_add}
\end{proposition}
\begin{proposition}
Let $A \subset B \subset C$. $B$ integral over $A$, $C$ integral
over $B$ then $C$ is an \mynameref{def:integralextension} over $A$.
\begin{proof}
Proof is left as an exercise.
\footnote{
Let $x \in C$ then
\[
x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0 = 0,
\]
where $b_i \in B$. Thus $x$ is an integral element over
$A\left[b_0, b_1, \dots, b_{n-1}\right]$. We also have that $B$
is integral over $A$ therefore $b_i$ is an integral over $A$. As
result we have $b_0$ is integral over $A$, $b_1$ is integral
over $A\left[b_0\right]$, and so on $x$ is integral over
$A\left[b_0, b_1, \dots, b_{n-1}\right]$. As result with
proposition \ref{prop:lec9_add} we have that
$A\left[b_0, b_1, \dots, b_{n-1}, x\right]$ is a finitely
generated $A$ module and as
$A\left[x\right] \subset A\left[b_0, b_1, \dots, b_{n-1},
x\right]$, the lemma \ref{lem:lec9_1} gives us that $x$ is an
integral element over $A$.
}
\end{proof}
\label{prop:lec9_1}
\end{proposition}
\begin{proposition}
$B$ is a finitely generated over $A$ as a module (see definition
\ref{def:fgmodule}) if and only if
$B=A\left[\alpha_1, \dots, \alpha_r\right]$ where each $\alpha_i$ is
an \mynameref{def:integralelement} over $A$.
\begin{proof}
Proof is left as an exercise
\footnote{
If $\alpha_i$ is an integral over $A$ then it also an integral
over $A\left[\alpha_1, \alpha_2, \dots, \alpha_{i-1}\right]$ and
therefore by proposition \ref{prop:lec9_add},
$A\left[\alpha_1, \alpha_2, \dots, \alpha_r\right] = B$ is finitely
generated $A$-module.
Let $B$ is finitely generated $A$ module i.e.
$B = \sum_{i=1}^r \alpha_i x_i$, where
$\alpha_i \in B$ - the module generators and $x_i \in A$.
If we look at any $\alpha_i$ we can notice that
$A\left[\alpha_i\right] \subset B$ - finitely generated $A$
module and therefore by lemma \ref{lem:lec9_1},
$\alpha_i$ is an integral element. We also have (from definition
\ref{def:fgmodule}) that $\forall b \in B, \exists \{x_i\} \in
A$ such that $b = \sum_{i=1}^r \alpha_i x_i$. Therefore
$B = A\left[\alpha_1, \alpha_2, \dots, \alpha_r\right]$.
}
\end{proof}
\label{prop:lec9_2}
\end{proposition}
\begin{proposition}
Let $A \subset B$. I.e. $B$ is an arbitrary extension of $A$. The
elements of $B$ which are integral over $A$ form a subring of $B$
(one calls it as the integral closure of $A$ in $B$).
\begin{proof}
Let $\alpha, \beta$ are integral over $A$ then $A\left[\alpha,
\beta\right]$ - finitely generated $A$-module (see definition
\ref{def:fgmodule}). This follows directly from lemma
\ref{lem:lec9_1}. It contains $\alpha + \beta$ and $\alpha \beta$
and by lemma \ref{lem:lec9_1} the $\alpha + \beta$ and $\alpha
\beta$ are integral over $A$. But this is exactly we need to
proof.
\footnote{
$A\left[\alpha + \beta\right] \subset A\left[\alpha,
\beta\right]$ and as soon as $A\left[\alpha,
\beta\right]$ - finetely generated $A$ module then
$\alpha+\beta$ is an integral element by lemma \ref{lem:lec9_1}.
Same result can be got for $\alpha \beta$ from the following
inclusion: $A\left[\alpha \beta\right] \subset A\left[\alpha,
\beta\right]$
}
\end{proof}
\label{prop:lec9_3}
\end{proposition}
\begin{definition}[Integrally closed]
Let $A \subset B$. $A$ is integrally closed in $B$ if the integral
closure of $A$ in $B$ equals to $A$.
$A$ is integrally closed (without mention of any $B$) if it is
integrally closed in \mynameref{def:fractionfield} $\mathrm {Frac}(A)$.
\label{def:integrallyclosed}
\end{definition}
\begin{example}
$\mathbb{Z}$ is \mynameref{def:integrallyclosed}.
\footnote{
$\mathrm {Frac}(\mathbb{Z}) = \mathbb{Q}$. An arbitrary element
$q \in \mathbb{Q}$ is an integral element over
$\mathbb{Z}$ if and only if $q \in \mathbb{Z}$. For example
$5 \in \mathbb{Z} \subset \mathbb{Q}$ is integral over $\mathbb{Z}$ as a root of a
monic polynomial $P = X - 5$. But $\frac{5}{2} \in \mathbb{Q}$ is
not integral over $\mathbb{Z}$ because it is a root of a non-monic
polynomial $P = 2 X - 5$.
}
\end{example}
\begin{remark}
More generally any
\mynameref{def:ufd} is \mynameref{def:integrallyclosed}.
\begin{proof}
Let $A$ be a \mynameref{def:ufd} and $x \in \mathrm {Frac}(A)$ such
that $x \ne 0$. So
$x = \frac{p}{q}$ such that $p,q \in A, \left(p, q\right) = 1$
(this means no common prime divisor). If $x$ integral over $A$
then
\[
\left(\frac{p}{q}\right)^n + a_{n-1}\left(\frac{p}{q}\right)^{n-1}
+ \dots + a_1 \frac{p}{q} + a_0 = 0.
\]
Thus
\[
\frac{p^n + q a_n p^{n-1} + q^2 a_{n-1} p^{n-2} + \dots + q^{n-1}
a_1 p + q^n a_0}{q^n} = 0
\]
therefore $q \mid p^n$
\footnote{
This is because we have
\[
p^n = q \left(-a_n p^{n-1} - q a_{n-1} p^{n-2} - \dots - q^{n-2}
a_1 p - q^{n-1} a_0\right)
\]
and
\[
\left(-a_n p^{n-1} - q a_{n-1} p^{n-2} - \dots - q^{n-2}
a_1 p - q^{n-1} a_0\right) \in A
\]
}
which is in contradiction with
$\left(p, q\right) = 1$. As result we have that $q$ is invertible
and therefore $x \in A$.
\footnote{
$q^{-1} \in A$ and $x = \frac{p}{q} = p q^{-1} \in A$.
}
\end{proof}
\end{remark}
\subsection{Ring of integers in a number field}
\begin{definition}[Number field]
Let $K$ is a finite extension of $\mathbb{Q}$ i.e.
$\left[K:\mathbb{Q}\right] < \infty$. In the case $K$ is a number
field.
\label{def:numberfield}
\end{definition}
Let $K$ is a \mynameref{def:numberfield} and $\left[K:\mathbb{Q}\right]
= N$.
\begin{definition}[Ring of integers]
Let $K$ is a \mynameref{def:numberfield}. The ring of integers
$O_K \subset K$ is the integral closure of $\mathbb{Z}$
in $K$.
Note: We know that integral closure of $\mathbb{Z}$ in $\mathbb{Q}$
is $\mathbb{Z}$ but now we consider the closure in $K$ but not in
$\mathbb{Q}$.
\label{def:ringintegers}
\end{definition}
\begin{property}
\begin{enumerate}
\item $\forall \alpha \in K, \exists d \in \mathbb{Z} \setminus
\{0\}$ such that $d\alpha \in O_K$.
\item If $\alpha \in O_K$ then $P_{min}\left(\alpha,
\mathbb{Q}\right) \in \mathbb{Z}\left[X\right]$.
\end{enumerate}
\begin{proof}
For the first part lets
$P_{min}\left(\alpha,
\mathbb{Q}\right) = X^m + a_{m-1}X^{m-1} + \dots + a_1 X + a_0
\in \mathbb{Q}\left[X\right]$.
$\exists d \in \mathbb{Z}$ (the common denominator) such that
$\forall i: d a_i \in \mathbb{Z}$. So
$b_i = d^{m-i}a_i \in \mathbb{Z}$ for any $i$. Therefore
\[
\left(d \alpha\right)^m + b_{m-1} \left(d \alpha\right)^{m-1} +
\dots + b_0 = 0.
\]
Thus $d \alpha \in O_K$.
The second part is also easy. If we have such
$\alpha \in O_K$, it is a
root of some \mynameref{def:monicpolynomial}
$Q \in \mathbb{Z}\left[X\right]$.
Then the $P_{min} \mid Q$. So $Q = P_{min} R$.
If we pick $P_{min}$ to be monic, then by an
argument very similar to that of the \mynameref{lem:gauss},
we conclude that both $P_{min}, R \in \mathbb{Z}\left[X\right]$.
\footnote{
I.e. we can always write
\[
Q = m n P_1 R_1
\]
where $P_1, R_1 \in \mathbb{Z}\left[X\right]$. Choose $p$ is a
prime divisor of $m n$ we can write
\[
\bar{P_1}\bar{R_1} = \bar{Q} = 0
\]
where $\bar{Q} = Q \mod p$, $\bar{P}_1 = P_1 \mod p$,
$\bar{R_1} = R_1 \mod p$ thus $\bar{P}_1$ or $\bar{R}_1$ are
equal to 0. Let $\bar{R}_1 = 0$ thus all coefficients of $R_1$ are
divided by $p$ i.e. $R_1 = \frac{R_2}{p}$ where
$R_2 \in \mathbb{Z}\left[X\right]$. Therefore
\[
Q = \frac{mn}{p}P_1 R_2
\]
Continue this way we can conclude that
\[
Q = P_s R_t,
\]
where $P_s, R_t \in \mathbb{Z}\left[X\right]$. As soon as $Q$ is
monic then both $P_s$ and $R_t$ are monic. Using the fact that
$P_s = z P_{min}$ where $z \in \mathbb{Z}$ we have
$P_s\left(\alpha\right) = 0$ and therefore we can
conclude that $P_s$ is the minimal polynomial.
}
\end{proof}
\label{property:lec9_2}
\end{property}
\section{Norm and trace}
\subsection{Norms and traces}
(The material was given inside the proof of theorem \ref{thm:lec9_1}
and can be considered as a recall. The remarks
\ref{rem:lec9_embedding} and \ref{rem:lec9_add} are not parts of the
lectures and were given for better understanding the material)
\begin{remark}[$K$ embedding of $E$ into the algebraic closure
$\bar{K}$]
Let $K \subset E \subset \bar{K}$. When we say about $K$ embedding
of $E$ into the algebraic closure $\bar{K}$ we assume
$\sigma \in Hom_K\left(E, \bar{K}\right)$ i.e. $\sigma$ is a
\mynameref{def:homomorphism} of \mynameref{def:kalgebra}s i.e. the map
that preserves the structure and especially $\sigma(K) = K$ i.e.
$\forall k \in K: \sigma(k) = k$.
If $E$ is a normal extension then all such homomorphisms have the
same image accordingly theorem \ref{thm:lec5_3}. The image is $E$
and therefore the homomorphisms can be considered as automorphisms
i.e. $Gal\left(E/K\right) = Hom_K\left(E, \bar{K}\right)$.
\label{rem:lec9_embedding}
\end{remark}
\begin{definition}[Norm]
Let $K \hookrightarrow E$ - finite separable field extension. Let $\alpha \in
E$. Define the norm of alpha with respect to this extension as
\[
\mathrm {N}_{E/K}\left(\alpha\right) =
\prod_{\sigma_i: E \hookrightarrow \bar{K}} \sigma_i\left(\alpha\right)
\]
i.e. we took a product by all $K$ embeddings of $E$ into the
algebraic closure of $K$ (see remark \ref{rem:lec9_embedding}).
And we also assume that $E$ is
finite and as result $i = 1, \dots, r$.
\label{def:norm}
\end{definition}
\begin{definition}[Trace]
Let $K \hookrightarrow E$ - finite separable field extension. Let $\alpha \in
E$. Define the norm of alpha with respect to this extension as
\[
\mathrm {Tr}_{E/K}\left(\alpha\right) =
\sum_{\sigma_i: E \hookrightarrow \bar{K}} \sigma_i\left(\alpha\right)
\]
i.e. we took a sum by all $K$ embeddings of $E$ into the
algebraic closure of $K$ (see remark \ref{rem:lec9_embedding}). And
we also assume that $E$ is finite and as result $i = 1, \dots, r$.
\label{def:trace}
\end{definition}
In the definitions \ref{def:norm} and \ref{def:trace} we assume that
the extension $E$ is \mynameref{def:separableextension}. If the
extension is not separable then you have to take it to the power
equal to the pure inseparable degree of $E/K$,
\footnote{
\cite{bib:lang} p. 284 gives the following definitions for norm and
trace in not separable case:
\begin{eqnarray}
\mathrm {N}_{E/K}\left(\alpha\right) =
\left(
\prod_{\sigma_i: E \hookrightarrow \bar{K}}
\sigma_i\left(\alpha\right)
\right)^{\left[E:K\right]_i},
\nonumber \\
\mathrm {Tr}_{E/K}\left(\alpha\right) =
\left[E:K\right]_i
\sum_{\sigma_i: E \hookrightarrow \bar{K}} \sigma_i\left(\alpha\right),
\nonumber
\end{eqnarray}
where $\left[E:K\right]_i$ is \mynameref{def:inseparabledegree}.
}
but for simplicity,
we shall suppose that everything is separate.
\begin{remark}
We have $\mathrm {N}_{E/K}\left(\alpha\right) \in K$ and
$\mathrm {Tr}_{E/K}\left(\alpha\right) \in K$
\label{rem:lec9_add}
\begin{proof}
Let $g \in Gal\left(E/K\right)$. We have to prove that
$g\left(\mathrm {N}_{E/K}\left(\alpha\right)\right) =
\mathrm {N}_{E/K}\left(\alpha\right)$. In the case
$\mathrm {N}_{E/K}\left(\alpha\right) \in K$ because
$E^{Gal\left(E/K\right)} = K$.
The $g$ just permutes the homomorphisms $Hom_K\left(E,
\bar{K}\right)$ i.e.
$\left|g Hom_K\left(E, \bar{K}\right)\right| =
\left|Hom_K\left(E, \bar{K}\right)\right|$. If this is not the
truth then $\exists \sigma_i, \sigma_j, \sigma_k \in Hom_K\left(E,
\bar{K}\right)$ such that
$g\sigma_i = \sigma_k, g \sigma_j = \sigma_k$ and
$\sigma_i \ne \sigma_j$.
Therefore
\[
\sigma_j = g^{-1} \sigma_k = g^{-1} g \sigma_i = \sigma_i
\]
that is contradiction.
By the field definition
(\ref{def:field}) the product in
\mynameref{def:norm} does not depend on the order and the
result become the same after the permutation.
The same result is for \mynameref{def:trace}.
\end{proof}
\end{remark}
\begin{property}
\begin{enumerate}
\item $\mathrm{N}_{E/K}: E^\times \to K^\times$
\footnote{
$E^\times = E \setminus \{0\}$ and
$K^\times = K \setminus \{0\}$
}
is multiplicative
i.e. homomorphism of groups.
$\mathrm{Tr}_{E/K}: E \to K$ is additive, $K$-linear
i.e. homomorphism of $K$-vector spaces.
\footnote{
The property statement is the truth i.e.
there really should be $K$ (not $\bar{K})$(see remark
\ref{rem:lec9_add}).
}
\item If $E=K\left(\alpha\right)$, $n = \left[E:K\right]$ and
$P_{min}\left(\alpha, K\right) = X^n + a_1 X^{n-1} + \dots +
a_{n-1} X + a_{n}$ then $\mathrm{N}_{E/K}\left(\alpha\right) = (-1)^n
a_n$ and $\mathrm{Tr}_{E/K}\left(\alpha\right) = -a_1$.
\item If we have the tower of extensions $K \subset F \subset E$
then
\[
\mathrm{N}_{E/K} =
\mathrm{N}_{F/K} \circ
\mathrm{N}_{E/F}
\]
and the same for trace
\[
\mathrm{Tr}_{E/K} =
\mathrm{Tr}_{F/K} \circ
\mathrm{Tr}_{E/F}
\]
\footnote{
Or in other words
\[
\mathrm{N}_{E/K}\left(\alpha\right) =
\mathrm{N}_{F/K} \left(
\mathrm{N}_{E/F}\left(\alpha\right)
\right)
\]
and
\[
\mathrm{Tr}_{E/K}\left(\alpha\right) =
\mathrm{Tr}_{F/K} \left(
\mathrm{Tr}_{E/F}\left(\alpha\right)
\right).
\]
Lets also note \cite{bib:KeithConradTraceNorm2} that the
following expression does not make sense:
\[
\mathrm{Tr}_{E/F} \left(
\mathrm{Tr}_{F/K}\left(\alpha\right)\right)
\]
because $\mathrm{Tr}_{E/F}: E \to F$ and
$\mathrm{Tr}_{F/K}: F \to K$ (see remark
\ref{rem:lec9_add}).
The same is valid for \mynameref{def:norm}.
}
\item Consider $T: E \times E \xrightarrow[(x, y) \to
\mathrm{Tr}_{E/K}\left(xy\right) ]{} K$. This is a
non-degenerate $K$-bilinear form (see
definition \ref{def:nondegeneratebf})
\item $\alpha$ integral over $\mathbb{Z}$. Then
$\mathrm{N}_{E/\mathbb{Q}}\left(\alpha\right),
\mathrm{Tr}_{E/\mathbb{Q}}\left(\alpha\right)$ are integers.
\footnote{
We have $K = \mathbb{Q}$ in the property.
}
\end{enumerate}
\label{property:lec9_norm_trace}
\begin{proof}
The first property is obvious from the definition.
\footnote{
Let $\alpha, \beta \in E$ then
\begin{eqnarray}
\mathrm{N}_{E/K}\left(\alpha \beta\right) =
\prod_{\sigma_i: E \hookrightarrow \bar{K}}
\sigma_i\left(\alpha \beta\right) =
\nonumber \\
=
\prod_{\sigma_i: E \hookrightarrow \bar{K}}
\sigma_i\left(\alpha\right)
\sigma_i\left(\beta\right)
=
\mathrm{N}_{E/K}\left(\alpha\right)
\mathrm{N}_{E/K}\left(\beta\right).
\nonumber
\end{eqnarray}
With remark \ref{rem:lec9_add} we can get that
\[
\mathrm{N}_{E/K}: E^\times \to K^\times
\]
If we take $a,b \in K, \sigma \in Hom_K\left(E, \bar{K}\right)$
then one can get that
$\sigma\left(a \alpha\right) = a
\sigma\left(\alpha\right)$. This is because $a$ is fixed under
every embedding of $E$ over $K$ (\cite{bib:lang} page 286), see
also remark \ref{rem:lec9_embedding}.
Therefore one can get
\[
\mathrm{Tr}_{E/K}\left(a \alpha + b \beta\right)=
a \mathrm{Tr}_{E/K}\left(\alpha\right) +
b \mathrm{Tr}_{E/K}\left(\beta\right)
\]
I.e. there is a $K$-linear map of $E$ to $K$
(see remark \ref{rem:lec9_add}).
}
The second one uses the following fact:
$\sigma_i\left(\alpha\right)$ are roots of $P_{min}\left(\alpha,
K\right)$. The \mynameref{def:norm} is a product and it's assigned
to its constant term ($a_n$) and the sum is the first coefficient
term ($a_1$) (see also example \ref{ex:lec8_generalequation}).
The third property is somewhat less trivial, so this follows from,
the fact that if $\tau_1, \dots, \tau_k$ are $K$ embeddings of $F$
into $\bar{K}$ and, $\mu_1, \dots, \mu_s$ are $F$ embeddings of
$E$ into $\bar{K}$ then the embedings of $E$ into $\bar{K}$ are
just the compositions $\{\tau_j \mu_i\}$.
\footnote{
We have $K \subset F \subset \bar{K}$, and (see remark
\ref{rem:lec9_embedding}):
\[
\begin{cases}
\tau_j: F \to \bar{K} \text{ such that }
\forall k \in K: \tau_j(k) = k, \\
\mu_i: E \to \bar{K} \text{ such that }
\forall f \in F: \mu_i(f) = f.
\end{cases}
\]
Lets extend homomorphism $\tau_j: F
\to \bar{K}$ to the automorphism
$\bar{K} \to \bar{K}$ and denote the result with the same
$\tau_j$ (\cite{bib:lang} p. 285).
As result we have $\tau_j \mu_i: E \to \bar{K}$. We also have
$\forall k \in K \subset F$
\(
\mu_i(k) = k
\) (as soon as $k \in F$) and therefore
$\tau_j(\mu_i(k)) = \tau_j(k) = k$. Thus
$\tau_j \mu_i \in Hom_K\left(E, \bar{K}\right)$.
}
For the 4th property. Indeed if $x \in \ker T$,
\footnote{
$T: E \times E \to K$
}
that means
$\mathrm{Tr}_{E/K}\left(xy\right) = 0, \forall y \in E$ (see
definition \ref{def:nondegeneratebf}), but this
can't be a case when $xy \in K \setminus \{0\}$ by definition
\ref{def:trace}
\footnote{
and by taking into consideration the following fact
(see remark \ref{rem:lec9_embedding}):
if $xy \in K$
then $\sigma_i(xy) = xy$
}
$\mathrm{Tr}_{E/K}\left(xy\right) =
\left[E:K\right] xy$.
\footnote{
we proved that $T$ has a trivial kernel i.e. only $x = 0$ is in
the $\ker T$. There is one of definitions of the non-degenerate
$K$-bilinear form (see definition \ref{def:nondegeneratebf})
}
For the 5th property we know that
\begin{eqnarray}
\mathrm{Tr}_{E/\mathbb{Q}}\left(\alpha\right) =
\mathrm{Tr}_{\mathbb{Q}(\alpha)/\mathbb{Q}}\left(
\mathrm{Tr}_{E/\mathbb{Q}(\alpha)}\left(\alpha\right)
\right) =
\nonumber \\
=
\mathrm{Tr}_{\mathbb{Q}(\alpha)/\mathbb{Q}}\left(
\left[E:\mathbb{Q}(\alpha)\right] \alpha
\right) =
\left[E:\mathbb{Q}(\alpha)\right]
\mathrm{Tr}_{\mathbb{Q}(\alpha)/\mathbb{Q}}\left(
\alpha
\right)
\nonumber
\end{eqnarray}
but
\(
\mathrm{Tr}_{\mathbb{Q}(\alpha)/\mathbb{Q}}\left(
\alpha
\right) \in \mathbb{Z}
\)
because
\(
\mathrm{Tr}_{\mathbb{Q}(\alpha)/\mathbb{Q}}\left(
\alpha
\right)
\) is a coefficient of $P_{min}\left(\alpha, \mathbb{Q}\right) \in
\mathbb{Z}\left[X\right]$.
\footnote{
Property \ref{property:lec9_2} says that $P_{min}\left(\alpha,
\mathbb{Q}\right) \in \mathbb{Z}\left[X\right]$. But 2d item of
the property \ref{property:lec9_norm_trace} says that the
\mynameref{def:trace} is a coefficient of the polynomial i.e.
\(
\mathrm{Tr}_{\mathbb{Q}(\alpha)/\mathbb{Q}}\left(
\alpha
\right) \in \mathbb{Z}
\)
}
\end{proof}
\end{property}
Why such names are used? Consider the following map
(multiplication by $a$)
\[
f_a: E \xrightarrow[x \to a x]{} E
\]
then the $\mathrm{Tr}_{E/K}\left(a\right)$ is exactly the trace of the
linear map (i.e. sum of diagonal elements of the linear map matrix in
a basis) and the $\mathrm{N}_{E/K}\left(a\right)$ is the
determinant
\footnote{
Consider an easy case when $E = K\left(a\right)$. In the case
$a$ is a root of $P_{min}\left(a, K\right) = a_n + a_{n-1} X + \dots +
a_1 X^{n-1} + X^{n}$.
We have the following basis $1, a, \dots, a^{n-1}$. The basis is
transformed by multiplication via the following rules
\[
\begin{cases}
1 \to a, \\
a \to a^2, \\
\vdots \\
a^{n-1} \to a^n = -a_n - a_{n-1} a - \dots -
a_1 a^{n-1}.
\end{cases}
\]
Therefore the \mynameref{def:endomorphism} matrix can be written as
follows:
\[
M =
\begin{bmatrix}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_2 & -a_1
\end{bmatrix}
\]
It can be easy seen (with 2d item of
the property \ref{property:lec9_norm_trace}) that
\[
\mathrm{Tr}\left(M\right) = -a_1 =
\mathrm{Tr}_{E/K}\left(a\right)
\]
and
\[
\det\left(M\right) =
(-1)^n a_n =
\mathrm{N}_{E/K}\left(a\right).
\]
}
. Now this $f_a$ is a a $K$-linear map. It's an
\mynameref{def:endomorphism} of a vector space $E/K$, and
the $\mathrm{Tr}_{E/K}\left(a\right)$ is
the trace of this endomorphism, and the
$\mathrm{N}_{E/K}\left(a\right)$ is the determinant of this endomorphism.
\subsection{Theorem about rings of integers}
\begin{theorem}
$O_k$ is a finitely generated (see definition \ref{def:fgmodule})
$\mathbb{Z}$-module that is a \mynameref{def:freemodule} of
rank (see definition \ref{def:rankfreemodule}) $n$, where $n=
\left[K:\mathbb{Q}\right]$.
\label{thm:lec9_1}
\begin{proof}
If $e_1, \dots, e_n$ is a $\mathbb{Q}$-basis of $K$ then
$\forall i \exists d_i \in \mathbb{Z} \setminus
\{0\}$ such that $d_i e_i \in O_K$ (see property
\ref{property:lec9_2}). Therefore $O_K$ contains a free
$\mathbb{Z}$-submodule of rank $n$
\footnote{
This is because $d_1 e_1, \dots, d_n e_n$ are linearly
independent and form a basis of a free $\mathbb{Z}$-module. The
number $n$ is the cardinality of the basis.
It can be proved by contradiction i.e. let there exists a set
$\{c_i\}$ such that $\exists j: c_j \ne 0$ and
\[
\sum_{i=1}^n c_i d_i e_i = 0,
\]
as soon as $d_j \ne 0$ then $k_j = c_j d_j \ne 0$ and
\[
\sum_{i=1}^n k_i e_i = 0,
\]
i.e. $\{e_i\}$ are not linearly independent. This is in
contradiction with the initial conditions.
}.
What is the $\mathbb{Z}$-module this is a finitely generated
\mynameref{def:fgagroup} and we know a lot of things about such
groups. The \mynameref{def:fgagroup} is the same as
finitely generated $\mathbb{Z}$-module. Any such group is isomorphic
to (see theorem \ref{thm:fgagroup})
\[
\mathbb{Z}^n \oplus A,
\]
where $A$ is a finite group (torsion part). A subgroup
$B \subset \mathbb{Z}^n$ is itself a free module ($B \cong \mathbb{Z}^m$)
of rank $m \le n$.
We have to show that $O_K \subset A$ where $A$ is a free
$\mathbb{Z}$-submodule of rank $n = \left[K:\mathbb{Q}\right]$.
Let $e_1, \dots, e_n$ is a $\mathbb{Q}$-basis of $K$ (as above)
contained in $O_K$. Consider the following map
($T: K \times K \to \mathbb{Q}$):
\[
(x,y) \to \mathrm{Tr}_{K/\mathbb{Q}}\left(xy\right)
\]
this is
\mynameref{def:nondegeneratebf} (see 4th property
\ref{property:lec9_norm_trace}) therefore $\exists v_1, \dots,
v_n$ - \mynameref{def:dualbasis} ($\mathbb{Q}$-basis of $K$)
and we have the property that
$\mathrm{Tr}_{K/\mathbb{Q}}\left(e_i v_j\right) = \delta_{ij}$.
\footnote{
Lets consider the following map $T: K \times K \to
\mathbb{Q}$. We can use it to construct a linear map by the
following rule: $\forall x \in K$ we have $f_x(y) =
T(x,y): K \to \mathbb{Q}$.
We have $f_{x+y} = f_x + f_y$ and $f_{ax} = a f_x$
i.e. the set $\{f_x\} = K^\ast$ is the linear space.
The map $K \xrightarrow[x \to f_x]{} K^\ast$ is
\mynameref{def:surjection} by the $f_x$ construction. The map is
also \mynameref{def:injection} as soon as the map $T: K \times K \to \mathbb{Q}$ is
\mynameref{def:nondegeneratebf} and as result the $f_x(y) =
T(x,y)$ has a trivial kernel (if $x \ne 0$): $\ker f =
\{0\}$. Therefore we can conclude that $K^\ast$ is
\mynameref{def:dualspace}. I.e. exists a set of elements
$\{f_{v_j}\} \subset K^\ast$ which
form the \mynameref{def:dualbasis} to $\{e_i\}$ i.e. $f_{v_j}(e_i) =
\delta_{ij}$. Each element $f_{v_j}$ of dual space corresponds
to $v_j \in K$. For such $v_j$ we have:
\[
\delta_{ij} = f_{v_j}(e_i) = T(v_j, e_i) =
\mathrm{Tr}_{K/\mathbb{Q}}\left(v_j e_i\right).
\]
}
We claim that $\mathbb{Z}$ submodule generated by $v_1, \dots,
v_n$ contains $O_K$. Indeed let $\alpha \in O_K$ and write
\(
\alpha = \sum \alpha_i v_i, \alpha_i \in \mathbb{Q}
\). We can do it because $\{v_i\}$ is a $\mathbb{Q}$ basis of
$K$. But one can see that $\alpha_i \in \mathbb{Z}$ because
$\alpha_i = \mathrm{Tr}_{K/\mathbb{Q}}\left(\alpha e_i\right)$ (by
definition of $v_j$).
\footnote{
\begin{eqnarray}
\mathrm{Tr}_{K/\mathbb{Q}}\left(\alpha e_i\right) =
\mathrm{Tr}_{K/\mathbb{Q}}\left(\sum_{j=1}^n\alpha_j v_j
e_i\right) =
\nonumber \\
= \sum_{j=1}^n\alpha_j
\mathrm{Tr}_{K/\mathbb{Q}}\left( v_j
e_i\right) =
\sum_{j=1}^n\alpha_j \delta_{ij} = \alpha_i
\nonumber
\end{eqnarray}
}
Since $\alpha$ and $e_i$ are elements of
$O_K$ then $\alpha e_i \in O_K$ too. Therefore
$\mathrm{Tr}_{K/\mathbb{Q}}\left(\alpha e_i\right) \in
\mathbb{Z}$. So $\alpha_i \in \mathbb{Z}$ and this one is what we
want to proof. We have expressed any element of $O_K$ as a
combination of $v_i$ with integral coefficients. So $O_K$ is contained
in a $\mathbb{Z}$ submodule, generated by $\{v_i\}$.
\end{proof}
\end{theorem}
\section{Reduction modulo a prime}
Let $P \in \mathbb{Z}\left[X\right]$ is an irreducible polynomial with integer
coefficients. $K$ is a \mynameref{def:splittingfield} of $P$ over
$\mathbb{Q}$ and $n = \left[K:\mathbb{Q}\right]$. Let
$G = Gal\left(P\right) \eqdef Gal\left(K/\mathbb{Q}\right)$. We denote
roots of $P$ as $\alpha_1, \dots, \alpha_n$ and they are elements of
$O_K$. $G$ acts on the set of roots, and on $O_K$. We will denote
$O_K$ as $A$. Let $p$ is a prime number and we will consider $A/pA$.
As we have seen
\footnote{
see proposition \ref{prop:lec4_prop2} where $M = A, A=\mathbb{Z}$
and $I = p\mathbb{Z}$.
}
\[
A/pA \cong A \otimes_{\mathbb{Z}} \mathbb{Z}/p\mathbb{Z} =
A \otimes_{\mathbb{Z}} \mathbb{F}_p
\]
there $A \otimes_{\mathbb{Z}} \mathbb{F}_p$ is a
$n$-dimension vector space over $\mathbb{F}_p$
\footnote{
As soon as $A=O_K$ is a free
$\mathbb{Z}$-module of rank $n$ (see theorem \ref{thm:lec9_1}) then
proposition
\ref{prop:lec4_Addon} gives us that $A \otimes_{\mathbb{Z}}
\mathbb{F}_p$ is a free $\mathbb{F}_p$-module with rank equal
to $n$.
}.
Maximal ideals
of $A/pA$ are in one-to-one correspondence with maximal ideals of $A$
containing $p$. As we know (see theorem
\ref{thm:structurefinitekalgebra}) there are only finitely many
maximal ideal in a finite algebra over a field. Therefore $A$ also has
finitly many
maximal ideals $J_1, \dots, J_r$ containing $p$. Our group $G$ acting
on $A$ must permute these maximal ideals in some way.
\footnote{
Let $J$ is an \mynameref{def:ideal} of $A$, then $A J = J$