-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlecture8.tex
1385 lines (1318 loc) · 51.8 KB
/
lecture8.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%% -*- coding:utf-8 -*-
\chapter{Solvability by radicals, Abel's theorem. A few words on
relation to representations and topology}
We finally arrive to the source of Galois theory, the question which
motivated Galois himself: which equation are solvable by radicals and
which are not? We explain Galois' result: an equation is solvable by
radicals if and only if its Galois group is solvable in the sense of
group theory. In particular we see that the "general" equation of
degree at least 5 is not solvable by radicals. We briefly discuss the
relations to representation theory and to topological coverings.
\section{Extensions solvable by radicals. Solvable groups. Example}
\subsection{Extensions solvable by radicals}
Let $K$ is a field of \mynameref{def:fieldcharacteristic} 0: $char(K) = 0$. It is embedded
into its \mynameref{def:algebraicclosure}.
\begin{definition}[Extension solvable by radicals]
A finite extension $E$ of $K$ is solvable by radicals if
$\exists \alpha_1, \dots, \alpha_r$ generating $E$ such that
$\alpha_i^{n_i} \in K\left(\alpha_1, \dots, \alpha_{i-1}\right)$ for
some $n_i \in \mathbb{N}$.
\label{def:solvableextension}
\end{definition}
\begin{example}
Let $K = \mathbb{Q}$, $E = \mathbb{Q}\left(\sqrt[3]{2 + 3
\sqrt{7}}, \sqrt[5]{4 + 5 \sqrt{11}}\right)$. We have
$\alpha_1 = \sqrt{7}, \alpha_2 = \sqrt{11},
\alpha_3 = \sqrt[3]{2 + 3\sqrt{7}}, \alpha_4 = \sqrt[5]{4 + 5
\sqrt{11}}$.
\end{example}
\begin{definition}[Polynomial solvable by radicals]
$P \in K\left[X\right]$ is called solvable by radicals if exists a
$E$ - \mynameref{def:solvableextension} and containing all roots of
$P$.
\label{def:solvablepolynomial}
\end{definition}
So more precisely, it would say that the equation, $P = 0$ is solvable
by radicals.
\begin{property}
\begin{enumerate}
\item \mynameref{def:compositeextension} of solvable by radicals is itself
solvable by radicals
\item If $L$ extension of $K$ is solvable by radicals (by definition
$L$ should be finite extension of $K$) then exists a finite
\mynameref{def:galoisextension} $E$ containing $L$ and solvable by
radicals.
\end{enumerate}
\label{property:solvable}
\begin{proof}
For the first property (the proof is missing in the lectures): let
$L = L_1 L_2$ where $L_1$ and $L_2$ are solvable i.e.
$L_1 = K\left(\alpha_1, \dots, \alpha_n\right),
L_2 = K\left(\beta_1, \dots, \beta_m\right)$ with $\alpha_i,
\beta_j$ which satisfies properties from definition
\ref{def:solvableextension}. In the case we can assume
$L = L_1 L_2 = K\left(L_1 \cup L_2\right) =
K\left(\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_m\right)$
and all properties from definition
\ref{def:solvableextension} will also be satisfied. Therefore
the composite extension $L = L_1 L_2$ is also solvable.
For the second property: Indeed take a composite of all images of $L$ in
$\bar{K}$ or, in other words, images of $L$ by
$Gal\left(\bar{K}/K\right)$.
\footnote{
Lets prove by induction. For the first step we have that
$K\left(\alpha\right)$ is solvable therefore
$\exists d = \min\{j \mid \alpha^j \in K\}$. Let
$\zeta_d$ is a root of unity i.e. root of $X^d - 1$ then by
proposition \ref{prop:lec7_1}, the
$K\left(\zeta_d, \alpha\right) \supset K\left(\alpha\right)$ is
a Galois extension and it has a finite degree ($\le d \cdot d$).
Using induction hypothesis we have that if
$K\left(\alpha_1, \dots, \alpha_i\right)$ is solvable then there
exists a Galois extension of finite degree
$F = K\left(\beta_1, \dots, \beta_k \right)$ that is solvable
and $K\left(\alpha_1, \dots, \alpha_i\right) \subset F$.
By \mynameref{thm:galoiscorrespondence} (item
\ref{thm:galoiscorrespondence:item2b}) we have that
$\forall g \in G = Gal\left(\bar{K}/K\right)$:
\[
g\left(F\right) = F.
\]
Lets consider $F\left(\alpha_{i+1}\right)$. As we know
(by induction hypothesis)
$K\left(\alpha_1, \dots, \alpha_i, \alpha_{i+1}\right)$ is
solvable i.e.
\(
\exists d = \min\{k \mid \alpha_{i+1}^k
\in K\left(\alpha_1, \dots, \alpha_i\right)\}
\)
therefore $\alpha_{i+1}$ is a root of the following irreducible
polynomial $X^d - a$ where $a = \alpha_{i+1}^d$.
The Galois group $G = Gal\left(\bar{K}/K\right)$ permutes the
roots of the polynomial and as result $\forall g \in G$
\[
L_g = g\left(F\left(\alpha_{i+1}\right)\right) =
F\left(\beta_g\right),
\]
where $\beta_g = g\left(\alpha_{i+1}\right)$ is a root of $X^d -
a$. I.e. $L_g$ is solvable. If we take a composite extension
$L \cup_{g \in G} L_g$ then by first property of
\ref{property:solvable} it will be solvable but as soon as
$L$ is the image of all $g \in G$ then
$\forall g \in G: g\left(L\right) = L$ and by
\mynameref{thm:galoiscorrespondence} (item
\ref{thm:galoiscorrespondence:item2b}) the extension $L$ is
Galois. $L$ is a splitting field of $X^d - a$ (because it
contains all its roots) but by theorem \ref{thm:lec2_1} it has
finite degree: $\left[L : F\right] \le d!$.
}
\end{proof}
\end{property}
\subsection{Solvable groups}
This shall be a brief reminder since this is not a course on group
theory, you are supposed to know some group theory already. So I
somehow I presume that you are familiar with this definition but I
will recall the definition of basic properties.
\begin{definition}[Solvable group]
$G$ is called solvable if it has a filtration
i. e. $G = G_0 \supset G_1 \supset \dots \supset G_{r-1} \supset G_r
= \left\{e\right\}$, such that $G_i$ is a
\mynameref{def:normalsubgroup} of
$G_{i-1}$ and the \mynameref{def:quotientgroup} $G_{i-1}/G_i$ is
an \mynameref{def:abeliangroup}.
\label{def:solvablegroup}
\end{definition}
\begin{example}[Group of permutations $S_3$]
Consider $S_3$ - the group of permutations (see also example
\ref{ex:s3group}). It's solvable because
$S_3 \supset A_3 \supset \left\{e\right\}$.
We have $\left|S_3/A_3\right| = 2$ (see example
\ref{ex:s3a3quotientgroup}) i.e. $S_3/A_3$ is cyclic of order
2. $\left|A_3\right| = 3$ i.e. $A_3$ - cyclic of order 3.
\footnote{
As it was mentioned at \cite{wiki:finitegroup} there is only one
group of order 3. We also have (with theorem
\ref{thm:cyclic_group_is_abelian}) that $A_3$ is
\mynameref{def:abeliangroup}
}
\label{ex:lec8_s3}
\end{example}
\begin{example}[Group of permutations $S_4$]
Consider $S_4$ - the group of permutations (see also example
\ref{ex:s3group}). It's solvable because
$S_4 \supset A_4 \supset K \supset \left\{e\right\}$, where $K$ -
is a subgroup
\footnote{
There is a well known \mynameref{def:v4} $V_4$ -
the only non-cyclic group of order 4. It also denoted as $K_4$. We
have already seen it at example \ref{ex:lec7_cyclotomic8}.
}
of double transpositions
(see example
\ref{ex:permutation} for permutation cycles notation):
\[
K = \left\{
e, (12)(34), (13)(24), (14)(23)
\right\}.
\]
A double transposition is a product of two \mynameref{def:transposition}s with
distinct support, right, which permute the distinct elements.
$A_4 \triangleleft S_4$, $\left|S_4/A_4\right| = 2$, i.e.
$S_4/A_4$ is cyclic of order 2.
\footnote{
i.e. theorem
\ref{thm:cyclic_group_is_abelian} gives us that $S_4/A_4$ is
\mynameref{def:abeliangroup}
}
$K \triangleleft A_4$, $\left|A_4/K\right| = 3$, i.e.
$A_4/K$ is cyclic of order 3.
\footnote{
i.e. theorem
\ref{thm:cyclic_group_is_abelian} gives us that $A_4/K$ is
\mynameref{def:abeliangroup}
}
$K$ is \mynameref{def:abeliangroup} and
$K \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2 \mathbb{Z}$.
So this shows that $S_4$ is solvable.
\label{ex:lec8_s4}
\end{example}
\section{Properties of solvable groups. Symmetric group}
\begin{property}
If $G$ is solvable and $H \subset G$ is a subgroup of $G$ then $H$
is solvable.
\begin{proof}
Indeed $G_i \cap H$ gives a filtration with required property.
\footnote{
We have $H_i = G_i \cap H$ and as soon as
$G_i \triangleleft G_{i-1}$ we also get
$H_i \triangleleft H_{i-1}$. Really $\forall h \in H_{i-1}$ we
have $h \in G_{i-1} \cap H \subset G_{i-1}$. Thus, using normality
(see definition \ref{def:normalsubgroup})
$G_i \triangleleft G_{i-1}$,
\[
h G_{i} = G_{i} h.
\]
The last equation also holds for any subset of $G_{i-1}$ and
especially for $H_{i} = G_{i} \cap H \subset G_{i}$. I.e.
$\forall h \in H_{i-1}: h H_i = H_i h$ or in other words,
$H_i \triangleleft H_{i-1}$.
We have that $G_{i-1}/G_i$ is an
\mynameref{def:abeliangroup} and now we have to prove that the
\mynameref{def:quotientgroup}
$H_{i-1}/H_i$ is abelian. $\forall h' \in H_{i-1}/H_i, \exists
h_{i-1} \in H_{i-1}$ such that $h' = \left\{h_{i-1},
H_i\right\}$. From other hand $h_{i-1} \in G_{i-1}$ and
$H_i \subset G_i$ therefore we can associate with $h'$ the
$g' = \left\{h_{i-1}, G_i\right\} \in G_{i-1}/G_i$. I.e. we just
got an injection $f: H_{i-1}/H_i \xrightarrow[h' \to g']{}
G_{i-1}/G_i$. Obviously we have $\forall h',h'' \in H_{i-1}/H_i$
the following relation
\[
f\left(h' h''\right) = g' g'' =
f\left(h'\right) f\left(h''\right),
\]
where $g'' = \left\{h'', G_i\right\}$ and
$g' g'' = \left\{h' h'', G_i\right\}$. Therefore $f$ is
\mynameref{def:homomorphism}. Thus $\forall a,b \in H_{i-1}/H_i$
we have $f(ab) = f(a) f(b)$, but as soon as $G_{i-1}/G_i$ is
abelian, $f(a) f(b) = f(b) f(a) = f(ba)$, or, using property of
homomorphism, one can get that $ab=ba$ i.e. $H_{i-1}/H_i$ is an
\mynameref{def:abeliangroup} and as result $H$ is solvable.
}
\end{proof}
\label{property:lec8_solvable1}
\end{property}
\begin{property}
If $G$ is solvable and $H \triangleleft G$ is a normal subgroup of
$G$ then $G/H$ is solvable.
\begin{proof}
Indeed consider a projection map
\begin{equation}
\pi: G \to G/H
\label{eq:lec8_solvable_pi}
\end{equation}
then $\pi\left(G_i\right)$ gives a filtration $\left(G/H\right)_i$
on $G/H$ with required properties.
\footnote{
We can associate each element $g \in G$ with
$\bar{g} \in G/H$ via the following map:
$\pi: G \xrightarrow[g \to \bar{g}]{} G/H$. I.e.
$\pi(g) = \bar{g} = gH$. Thus we also have
$\pi\left(G_i\right) = \bar{G}_i = G_i H$. Lets prove that
$\bar{G}_i$ forms the required filtration i.e. that
$\bar{G}_i \triangleleft \bar{G}_{i-1}$
and $\bar{G}_{i-1}/\bar{G}_i$ is \mynameref{def:abeliangroup}.
For normality (see definition \ref{def:normalsubgroup}) prove we
have that
${G}_i \triangleleft {G}_{i-1}$ i.e.
$\forall g \in {G}_{i-1}: g G_i = G_i g$ but
$\forall \bar{g} \in \bar{G}_{i-1}$ we have
\[
\bar{g} \bar{G}_{i} = g H G_i H
\]
but $H \triangleleft G$ i.e.
$\forall g' \in G_i \subset G: g' H = H g'$ therefore
\[
\bar{g} \bar{G}_{i} = g G_i H =
G_i g H = G_i g H H = G_i H g H = \bar{G}_i \bar{g}
\]
that finished the normality proof.
For the abelian quotient proof we have that
${G}_{i-1}/{G}_i$ is \mynameref{def:abeliangroup} therefore
$\forall a,b \in {G}_{i-1}: a b G_i = b a G_i$. Using the fact
that $H$ is a \mynameref{def:normalsubgroup} one can get
\begin{eqnarray}
\bar{a} \bar{b} \bar{G}_i =
a H b H G_i H = a b G_i H = b a G_i H =
\nonumber \\
= b a G_i H H = b a H G_i H = b a H H G_i H =
b H a H G_i H =
\nonumber \\
= \bar{b} \bar{a} \bar{G}_i,
\nonumber
\end{eqnarray}
i.e. $\bar{G}_{i-1}/\bar{G}_i$ is \mynameref{def:abeliangroup}.
}
\end{proof}
\label{property:lec8_solvable2}
\end{property}
\begin{property}
If $H \triangleleft G$, $H$ and $G/H$ are solvable then $G$ is
solvable.
\label{property:lec8_solvable3}
\begin{proof}
Put togeter the filtration $H_i$ and
$\pi^{-1}\left(\left(G/H\right)_j\right)$ (see
(\ref{eq:lec8_solvable_pi}) for $\pi$ definition).
\footnote{
$\forall \bar{g} \in \bar{G} = G/H$ we can consider it as a set
of elements: $\bar{g} = \{\forall h \in H: h g\}$ where
$g \in G$.
If we combine then we will get the following: $\cup_g \bar{g} =
G$.
We also have
\begin{equation}
G H = \cup_g \bar{g} H =
\cup_g g H H = \cup_g g H = \cup_g \bar{g} = G.
\label{eq:lec8_solvable3_note_bar}
\end{equation}
Thus from $\bar{G}_i \triangleleft \bar{G}_{i - 1}$ one can
get $\forall \bar{g} \in \bar{G}_{i - 1}: \bar{g} \bar{G}_i =
\bar{G}_i \bar{g}$ or in other words
(with $G_{i - 1} = \cup_{\bar{g} \in \bar{G}_{i - 1}} \bar{g}$)
$\forall g \in G_{i - 1}$ we have the following
\[
g G_{i - 1} = g H G_{i - 1} H =
\bar{g} \bar{G}_{i-1} =
\bar{G}_{i-1} \bar{g} =
G_{i - 1} H g H =
G_{i - 1} H H g = G_{i - 1} g,
\]
i.e.
${G}_i \triangleleft {G}_{i - 1}$.
As result the filtration
\[
\{e\} = \bar{H} \triangleleft \dots \triangleleft
\bar{G}_i \triangleleft \bar{G}_{i - 1} \triangleleft \dots
\triangleleft \bar{G}_0 = \bar{G}
\]
produces the following one
\begin{equation}
H \triangleleft \dots \triangleleft
G_i \triangleleft G_{i - 1} \triangleleft \dots
\triangleleft G_0 = G.
\label{eq:lec8_solvable3_note}
\end{equation}
If $\bar{G}_{i - 1}/\bar{G}_{i}$ is abelian, i.e.
$\forall \bar{a},\bar{b} \in \bar{G}_{i - 1}$:
$\bar{a} \bar{b} \bar{G}_{i} = \bar{b} \bar{a} \bar{G}_{i}$, we
can get the following
$\forall a, b \in G_{i-1}$ (as soon as
(\ref{eq:lec8_solvable3_note_bar}) gives us $G_i = G_i H$)
\begin{eqnarray}
a b G_i = a b G_i H = a b G_i H H =
a b H G_i H = a b H H G_i H = a H b H G_i H =
\nonumber \\
=
\bar{a} \bar{b} \bar{G}_{i} = \bar{b} \bar{a} \bar{G}_{i} =
b H a H G_i H = b a H G_i H = b a G_i H = b a G_i
\nonumber
\end{eqnarray}
i.e. the \mynameref{def:quotientgroup} $G_{i-1}/G_i$ is an Abelian
group.
Finally combining (\ref{eq:lec8_solvable3_note}) with $H$
solvability one can get
\[
\{e\} \triangleleft \dots
\triangleleft
H_j \triangleleft H_{j - 1} \triangleleft \dots
\triangleleft H
\triangleleft \dots \triangleleft
G_i \triangleleft G_{i - 1} \triangleleft \dots
\triangleleft G_0 = G
\]
i.e. $G$ is solvable.
}
\end{proof}
\end{property}
The following property is not a part of the lectures but it's required
for the property \ref{property:lec8_solvable4} proof
\begin{property}
If $G$ is finite \mynameref{def:abeliangroup} than $G$ is solvable and
there exists a finite filtration with cyclic quotients for $G$.
\begin{proof}
Accordingly theorem \ref{thm:fgagroup}) each finite
\mynameref{def:abeliangroup} $G$ can be represented as
\[
G = K_1 \oplus K_2 \oplus \dots \oplus K_{n-1} \oplus K_n,
\]
where $K_i$ is a \mynameref{def:cyclicgroup}. If we denote
\[
G_i = K_1 \oplus K_2 \oplus \dots \oplus K_{i}
\]
when, by property \ref{property:directproduct}, we can get
\[
\{e\} = G_0 \triangleleft G_1 \triangleleft \dots \triangleleft
G_n = G.
\]
The gotten filtration has cyclic quotients because
(see property \ref{property:directproductquotient})
$G_i/G_{i-1} = K_i$, where $K_i$ is a cyclic group.
\end{proof}
\label{property:lec8_solvable4add}
\end{property}
\begin{property}
If $G$ is finite than $G$ is solvable (i.e. has a finite filtration with
Abelian quotients) if and only if there exists a
finite filtration with cyclic quotients.
\label{property:lec8_solvable4}
\begin{proof}
This is just because a finite \mynameref{def:abeliangroup} is just a
product of cyclic groups (see see \mynameref{thm:fgagroup}).
\footnote{
If exists a finite filtration of $G$ with cyclic quotient then
the $G$ is solvable because \mynameref{def:cyclicgroup} is
abelian (see theorem \ref{thm:cyclic_group_is_abelian}).
The other direction is not so simple. Lets $G$ is solvable then
$G_i \triangleleft G_{i - 1}$ and $G_{i-1} / G_{i} = K$ -
abelian. The property \ref{property:lec8_solvable4add} (that
follows from \mynameref{thm:fgagroup}) says us that there exists a
finite filtration with cyclic quotients for $K$ i.e.
\[
\{e\} = K^{(n)} \triangleleft \dots \triangleleft
K^{(j)} \triangleleft K^{(j - 1)} \triangleleft \dots \triangleleft
K_0 = K
\]
where $K^{(j-1)}/K^{(j)}$ is cyclic. The \mynameref{thm:correspondence}
says us that $\forall K^{(j)}, \exists G_{i}^{(j)} \subset G_{i-1}$
with the same properties i.e.
$G_i^{(j)} \triangleleft G_i^{(j-1)}$ and
$G_i^{(j-1)}/G_i^{(j)}$ is cyclic. As result we can complete
each $G_i \triangleleft G_{i-1}$ with
\[
G_i = G_i^{(n)} \triangleleft \dots
\triangleleft G_i^{(j)} \triangleleft G_i^{(j-1)} \triangleleft \dots
\triangleleft G_i^{(0)} = G_{i-1}
\]
and the result filtration will have cyclic quotients.
%% The $K$ is a finite \mynameref{def:abeliangroup}. But by
%% theorem \ref{thm:simple_subgroup_of_abelian} any finite abelian
%% group $K$ has a simple (see \mynameref{def:simplegroup}) subgroup
%% $K_1$. The group $K/K_1$ is again abelian, so it has a simple
%% subgroup $K_2/K_1$ we can continue until we reach $K$. Thus we
%% get a set of subgroups
%% of $G_i$ containing $G_{i-1}$ that we can
%% insert in the original series; repeat for each $i$ and finally
%% you get a composition series with abelian factors.
}
\end{proof}
\end{property}
Lets also look at another definition of solvable group
\begin{definition}[Solvable group]
$G$ is called solvable if the following sequence is finite:
\[
G
\supseteq \left[G, G\right] = G^{(1)}
\supseteq \left[G^{(1)}, G^{(1)}\right] = G^{(2)}
\supseteq \dots \supseteq
\left[G^{(n-1)}, G^{(n-1)}\right] = G^{(n)} = \left\{e\right\}
\]
where $G^{(i)} = \left[G^{(i-1)}, G^{(i-1)}\right]$ is the
\mynameref{def:commutatorsubgroup}.
\label{def:solvablegroupadd}
\end{definition}
\begin{remark}
Definitions of solvable group \ref{def:solvablegroupadd} and
\ref{def:solvablegroup} are equivalent.
\begin{proof}
Our filtration with \mynameref{def:commutatorsubgroup}s
$G \supseteq G^{(1)} \supseteq \dots \supseteq G^{(n)} =
\left\{e\right\}$
is a filtration with abelian quotient because
$G/\left[G, G\right]$ as well as
$G^{(i)}/\left[G^{(i)}, G^{(i)}\right] = G^{(i)}/G^{(i+1)}$ are
\mynameref{def:abeliangroup}s.
\footnote{
See definition \ref{def:abelianization} and theorem
\ref{thm:about_quotient_group_and_commutatorsubgroup}
}
From the other hand if $G/H$ is an \mynameref{def:abeliangroup} then
$H \supset \left[G, G\right]$.
\footnote{
See theorem \ref{thm:about_quotient_group_and_commutatorsubgroup}
}
So if a finite filtration with
abelian quotient exists then the filtration given by $G^{(i)}$ is
also finite. It must terminate after a finite steps. So, this
proves the equivalence.
\end{proof}
\label{rem:lec8_solvable}
\end{remark}
\begin{theorem}[$S_n$ solvability]
$S_n$ - the permutation of $n$ elements (see example
\ref{ex:sngroup}) is not solvable for $n \ge 5$.
\begin{proof}
It's easy to use definition \ref{def:solvablegroupadd}.
Main steps are the following
\begin{enumerate}
\item we know that $\left[S_n, S_n\right] = A_n$ - subgroup of
even permutations (see definition
\ref{def:alternatinggroup}). It can be seen from the fact that
any 3-cycle is a \mynameref{def:commutatorsubgroup}
\footnote{
Let $n \ge 3$ and $(a,b,c) \in S_n$ is a 3-cycle then
(see example \ref{ex:transposition_product})
\begin{eqnarray}
(a,b,c) = (a,b,c)^2 =
\left((a,c)(a,b)\right)^2 =
\nonumber \\
= (a,c)(a,b)(a,c)(a,b) =
(c,a)^{-1}(b,a)^{-1}(a,c)(a,b) =
\nonumber \\
=
(a,c)^{-1}(a,b)^{-1}(a,c)(a,b) =
\nonumber \\
=
\left[
(a,c),(a,b)
\right] \subset \left[S_n, S_n\right].
\nonumber
\end{eqnarray}
}
and 3-cycles
generate $A_n$
\footnote{
\label{note:lec8_3cycle}
Any even permutation can be represented in a form of product
of transpositions (see theorem
\ref{thm:permutationrepresent}). The number of
transpositions should be
even. We have several cases there:
\begin{enumerate}
\item The transpositions with different elements produces
2 3-cycles
\[
(a,b)(c,d) = (a,b,c)(b,c,d).
\]
Really
\[
(a,b,c)(b,c,d) =
\begin{array}{c}
c \to d \\
d \to b \to c \\
b \to c \to a \\
a \to b
\end{array} =
(a,b)(c,d)
\]
\item The transpositions that have a same element produces
a 3-cycle (see example \ref{ex:transposition_product})
\[
(a,c)(a,b) = (a,b,c)
\]
\end{enumerate}
As soon as we have even number of transposition then we will
always have a translation to a product of 3-cycles for any
product of transposition pairs.
}
\item If $n \ge 5$ then $\left[A_n, A_n\right] = A_n$ thus the
filtration generated by commutators will never terminate
i.e. will never reach the unity ($\left\{e\right\}$) and will
stabilize on $A_n$. How we can see it? We can remember that
$\left[A_4, A_4\right] = K$ (see example \ref{ex:lec8_s4}) -
the subgroup of double transpositions. $A_4 \hookrightarrow
A_n$ in many different ways. Because you can pick any 4
elements among our $n$ elements and just consider the
permutations of
those 4 elements as a subgroup of permutations of $n$
elements and then taking the commutators of those $A_4$, we
see
that all double transpositions are in the $\left[A_n,
A_n\right]$ (\mynameref{def:commutatorsubgroup} of $A_n$).
\footnote{
The double transposition consists of 4 elements. We can
consider all permutations of the 4 elements only and ignore
all others. For instance if $n = 6$ and we are interested in
all double transpositions of $1,2,4,5$. In the case we have
to look at the following permutations:
\[
\pi_{1,2,4,5} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6\\
i_1 & i_2 & 3 & i_3 & i_4 & 6
\end{pmatrix}.
\]
Note that we consider the even permutations only i.e.
$\pi_{1,2,4,5} \in A_6$.
From example \ref{ex:lec8_s4} we know that the commutator of
such permutations contains all double transpositions for $1,2,4,5$:
$\left\{e, (12)(45), (14)(25), (15)(24) \right\}$ (the
elements $3,6$ are not changed and disappeared in the
commutator). Continue such way we can conclude that for any
double transposition:
\[
(i_1,i_2)(i_3,i_4) \in \left[A_n, A_n\right]
\]
}
But
if $n \ge 5$, they generate $A_n$.
\footnote{
Really if $n \ge 5$ then for any 3 elements $a,b,c$ (which form a
3-cycle $(a,b,c)$) exist 2 elements $e,d$ such that all
elements $a,b,c,d,e$ are different. Using the
$(e,d)(e,d) = id$ one can get that 2 double transpositions
$(a,b)(d,e)$ and $(d,e)(b,c)$ generate the 3-cycle $(a,b,c)$:
\[
(a,b)(d,e)(d,e)(b,c) = (a,b)(b,c) = (a,b,c).
\]
I.e. any 3-cycle can be generated by 2 double
transpositions. Therefore (see note \ref{note:lec8_3cycle})
the whole $A_n$ is generated by
the double transpositions.
Thanks Arnur Nigmetov for the hint.
}
\end{enumerate}
\end{proof}
\label{thm:lec8_sn_solvability}
\end{theorem}
\section{Galois theorem on solvability by radicals}
The following claim missing in the lectures but it's important for the
theorem \ref{thm:lec8_1} proof.
\begin{claim}
Let $K \subset L \subset M$ and both $M$ and $L$ are
\mynameref{def:galoisextension}s over $K$ then
\[
\frac{Gal\left(M/K\right)}{Gal\left(M/L\right)}
\cong Gal\left(L/K\right).
\]
\begin{proof}
Consider the following group \mynameref{def:homomorphism}
\[
\phi:Gal\left(M/K\right) \xrightarrow[g \to g\mid_L]{} Gal\left(L/K\right).
\]
The \mynameref{thm:galoiscorrespondence} says that $\phi$ is
a \mynameref{def:surjection} with kernel
$Gal\left(L/F\right)$. Therefore by
\mynameref{thm:firstisomorphism} one can get the required
statement.
\end{proof}
\label{claim:galoisquotient}
\end{claim}
\begin{theorem}
Let $P \in K\left[X\right]$. $P$ is a
\mynameref{def:solvablepolynomial} if and only if
$Gal\left(P\right)$ is solvable. There
$Gal\left(P\right)$ is (by definition) $Gal\left(F/K\right)$ where
$F$ is a \mynameref{def:splittingfield} of $P$ over $K$.
\label{thm:lec8_1}
\begin{proof}
First of all lets proof that if $Gal\left(P\right)$ is solvable
then $P$ is solvable. Let $n = \left[F:K\right]$ and consider
$L = K\left(\zeta_n\right)$ where $\zeta_n$ - $n$-th root of 1.
Let $M = FL$ is a \mynameref{def:compositeextension}. So this is the
splitting and field of $P$ of which we have adjoined all the
$n$-th roots of unity. Then $M$ is a
\mynameref{def:galoisextension}
\footnote{
Accordingly property \ref{property:lec7_2} the composition of
two Galois extensions will also be Galois.
}
and
$Gal\left(M/L\right) \hookrightarrow Gal\left(F/K\right)$.
\footnote{
See theorem \ref{thm:lec7_3} where $L_1 = F, L_2 = L, L_1 L_2 =
M = FL$.
}
$\forall g \in Gal\left(M/L\right)$ leaves $F$ invariant.
\footnote{
$g(F) = F$ see \mynameref{thm:galoiscorrespondence} (point
\ref{thm:galoiscorrespondence:item2b})
}
If $g\mid_F = id$ then $g = id$. Then the image in fact of this
map is $Gal\left(F/F \cap L\right)$.
\footnote{
See theorem \ref{thm:lec7_3} where $L_1 = F, L_2 = L, L_1 L_2 =
M$.
}
So $G = Gal\left(M/L\right)$
is solvable
\footnote{
Using property \ref{property:lec8_solvable1} $G$ is solvable as
soon as $G \subset Gal\left(F/K\right)$ and
$Gal\left(F/K\right)$ is solvable
}
i.e.
\[
G = G_0 \supset G_1 \supset \dots \supset G_r = \left\{e\right\}
\]
and $G_i/G_{i+1}$ - cyclic
\footnote{
see property \ref{property:lec8_solvable4}
}
of order $n_i \mid n$.
\footnote{
As soon as $G_i, G_{i+1} \subset G$ then using
\mynameref{thm:lagrange} one can get that
$\left|G_i\right| \mid \left|G\right|$ as well as
$\left|G_{i+1}\right| \mid \left|G\right|$ and therefore
$\left|G_i/G_{i+1}\right| \mid \left|G\right|$. But
$G \subset Gal\left(F/K\right)$, thus
$\left|G\right| \mid \left|Gal\left(F/K\right)\right| = n$ and, as
result, $\left|G_i/G_{i+1}\right|$ divides $n$.
}
And as soon as
$n_i \mid n$ (very important), all $n$-th roots of 1 are in $M$
(this is why we adjoin the $L$).
Let $M_i = M^{G_i}$. We know $M_i \hookrightarrow M_{i+1}$ is a
cyclic Galois extension of order $n_i \mid n$ and roots of 1 are
in it, thus there is Kummer extension.
\footnote{
We have $M_i = M^{G_i}$ where
\[
M_0 = M^{G_0} = M^G = M^{Gal\left(M/L\right)} = L
\]
and
\[
M_r = M^{G_r} = M^{\{e\}} = M.
\]
Thus by \mynameref{thm:galoiscorrespondence},
as soon as
$G_r \triangleleft G_{r-1} \triangleleft \dots \triangleleft G_1
\triangleleft G_0 = G$,
we have the
following ``tower'':
\[
L = M_0 \subset M_1 \subset \dots \subset M_{r-1} \subset M_r = M.
\]
If we consider $M_i \subset M_{i+1}$ then we can get the
following: $M_i$ contains all $n$-th roots of unity as soon as
$K\left(\zeta_n\right) = L \subset M_i$; $M_{i+1}$ is
\mynameref{def:galoisextension} over $M_i$ with
\mynameref{def:galoisgroup} $G_i/G_{i+1}$
(we have $G_i = Gal\left(M/M_i\right)$,
$G_{i+1} = Gal\left(M/M_{i+1}\right)$ and therefore, by claim
\ref{claim:galoisquotient},
$G_i/G_{i+1} = Gal\left(M_{i+1}/M_i\right)$)
which is cyclic of order
$n_i \mid n$ and as
result $M_{i+1}$ will be also be cyclic of the same order $n_i
\mid n$. Therefore $M_{i+1}$ is a Kummer extension
(see section \ref{sec:kummerextension}) over $M_i$,
}
and therefore
$M_{i+1} = M_i\left(\sqrt[n_i]{a_i}\right)$ (see proposition
\ref{prop:lec7_2}).
So $M = K\left(\zeta_n, \alpha_1, \dots, \alpha_r\right)$ where
$\alpha_i = \sqrt[n_i]{a_i}$. Therefore $M$ is solvable by
radicals.
For another direction: if $P$ is solvable then $G$ is
solvable. Let $E$ is solvable extension containing $F$. We may
suppose (using property \ref{property:solvable}) that this is Galois.
Then write
$E = K\left(\alpha_1, \dots, \alpha_r\right)$ where
$\alpha_i^{n_i} \in K\left(\alpha_1, \dots,
\alpha_{i-1}\right)$. Then let $L = K\left(\zeta_n\right)$
where $n = LCM\left(\left\{n_i\right\}\right)$ so
$\forall n_i: n_i \mid n$. And
take $M = LE$. We have
$K\left(\alpha_1, \dots, \alpha_{i-1}\right) \hookrightarrow
K\left(\alpha_1, \dots, \alpha_i\right)$ - cyclic extension of
order $n_i$. We have $Gal\left(M/L\right)$ is solvable by this
cyclic subgroups. $Gal\left(M/K\right)$ is also solvable since
\[
Gal\left(M/L\right) \subset Gal\left(M/K\right)
\]
and the quotient (see claim \ref{claim:galoisquotient})
\[
\frac{Gal\left(M/K\right)}{Gal\left(M/L\right)}
\cong Gal\left(L/K\right)
\]
which is abelian.
\footnote{
as result the property \ref{property:lec8_solvable3} gives us
the solvability of $Gal\left(M/K\right)$
}
$Gal\left(F/K\right)$ is a quotient
\footnote{
??? subset
}
of $Gal\left(M/K\right)$ thus
it is solvable too.
\footnote{
by the property \ref{property:lec8_solvable1}
}
\end{proof}
\end{theorem}
\section{Examples of equations not solvable by radicals."General
equation"}
As we can see there exist equations which are not solvable in
radicals.
\begin{example}[Not solvable polynomial of degree 5]
Let $P \in \mathbb{Q}\left[X\right]$ is an irreducible polynomial
with rational
coefficients of degree 5. It has 3 real roots (and 2 complex
conjugate roots) as it shown on the picture.
\begin{tikzpicture}
\draw[->] (-1.5,0) -- (3,0) node[right] {$x$};
\draw[->] (0,-1.5) -- (0,1.5) node[above] {$y$};
\draw[scale=0.5,domain=-2.5:4.2,smooth,variable=\x,blue] plot
({\x},{0.01*(\x-1)*(\x-1)*(\x-1)*(\x-1)*(\x-1) - 0.5*(\x-1) + 0.01});
\end{tikzpicture}
We claim that $Gal\left(P\right) = S_5$. This is because
\begin{enumerate}
\item $Gal\left(P\right)$ contains the complex conjugation (we
have 2 complex conjugated roots but \mynameref{def:galoisgroup} is
the group of automorphisms which exchange roots and the complex
conjugation will exchange the 2 complex roots).
The complex conjugation is the transposition of roots
\footnote{
$(1,2) = 1 \to 2 \to 1$
}
\item As soon as $P$ is irreducible then $Gal\left(P\right)$
should act transitively (see definition \ref{def:transitive})
\index{Transitive group action}
on
roots (see remark
\ref{rem:lec5_onnormalext} item
\ref{rem:item:lec5_onnormalext_2}). We have an irreducible
polynomial. We can always send
one of its roots to another of its roots. We have this
isomorphism of stem fields which extends to an automorphism of
the splitting field. But, what is the subgroup of $S_5$, which adds
transitively?
$Gal\left(P\right) \subset S_5$ acts transitively. This means
that $5 \mid \left|Gal\left(P\right)\right|$. That is because
(see \mynameref{thm:orbitstabilizertheorem})
$\left|G\right| = \left|Orb\left(x\right)\right| \left|G_x\right|$
($Orb\left(x\right)$ - is the \mynameref{def:orbit},
$G_x$ - \mynameref{def:stabilizersubgroup})
but the orbit has 5 elements
\footnote{
$\left|Orb\left(x\right)\right| = 5$ because there are 5
different roots that can be permuted by the Galois group.
}
and therefore 5 divides
the cardinality of $G$. This means, by \mynameref{cor:sylow}
theorems, that our group contains something of order 5. But only
5-cycle has order 5 (see theorem
\ref{thm:finite_group_of_prime_order}).
But a 5-cycle and transposition generate
$S_5$ (see corollary \ref{cor:sn}).
So $Gal\left(P\right) = S_5$.
\end{enumerate}
In fact, the same argument is valid for $S_p$ with every $p$ - prime.
I.e. applies to an arbitrary prime number $p$ instead of 5.
So $Gal\left(P\right) = S_5$ - not solvable and therefore $P$ is not
solvable by radicals.
\label{ex:lec8_notsolvable1}
\end{example}
\begin{example}[General equation of degree $n$]
What's the general equation. It is the following
\[
X^n - T_1 X^{n-1} + T_2 X^{n-2} + \dots + \left(-1\right)^n T_n,
\]
where $T_i$ is a variable. Where does it come from? Let
$X_1, \dots, X_n$ are roots of a polynomial of degree $n$ when the
polynomial itself is
\begin{eqnarray}
\left(X - X_1\right) \cdot \dots \cdot \left(X - X_n\right) =
X^n - \left(\sum_i X_i \right) X^{n-1} +
\nonumber \\
+
\left(\sum_{i,j} X_i X_j \right) X^{n-2} + \dots +
\left(-1\right)^n \prod_i X_i,
\nonumber
\end{eqnarray}
i.e.
$T_1 = \sum_i X_i, T_2 = \sum_{i,j} X_i X_j, \dots, T_n = \prod_i
X_i$.
One has $K\left[T_1, \dots, T_n\right] \subset K\left[X_1, \dots,
X_n\right]$ (multi-variable polynomial rings). We have the same
also for field extensions:
$K\left(T_1, \dots, T_n\right) \subset K\left(X_1, \dots,
X_n\right)$.
The $K\left(X_1, \dots, X_n\right)$ is algebraic and a
splitting field for our general polynomial. So it has degree at most
$n!$, i.e.
$\left[K\left(X_1, \dots, X_n\right):K\right] \le n!$
(see theorem \ref{thm:lec2_1}). On the other hand
$K\left(T_1, \dots, T_n\right) \subset K\left(X_1, \dots,
X_n\right)^{S_n}$
\footnote{
This is because $S_n$ permutes the roots, for instance $X_k \to X_l \to
X_k$, but the equations for $T_i$ are not changed during the
transformation.
}
so degree of the extension is $n!$
\footnote{
We have that
$S_n \subset Gal\left(K\left(X_1, \dots, X_n\right)/
K\left(T_1, \dots, T_n\right)\right)$ and therefore
\[
\left[K\left(X_1, \dots, X_n\right):
K\left(T_1, \dots, T_n\right)\right] \ge \left|S_n\right| = n!.
\]
Thus with $\left[K\left(X_1, \dots, X_n\right):K\right] \le n!$
one can get that
$\left[K\left(X_1, \dots, X_n\right):
K\left(T_1, \dots, T_n\right)\right] = n!$
and
$\left[K\left(X_1, \dots, X_n\right):K\right] = n!$.
}
and
\[
K\left(T_1, \dots, T_n\right) = K\left(X_1, \dots,
X_n\right)^{S_n}.
\]
In particular the Galois group is $S_n$ and our
general polynomial is not solvable by radicals if $n \ge 5$.
This is known as Abel theorem
\label{ex:lec8_generalequation}
\end{example}
\section{Galois action as a representation. Normal base theorem}
Connection with group representations.
\begin{definition}[Group representation]
Let $G$ is a finite group. $V$ is a \mynameref{def:vectorspace} over
$K$. Representation of $G$ is a \mynameref{def:homomorphism}
$\rho: G \to GL\left(V\right)$
(where $GL\left(V\right)$ is the \mynameref{def:glv} i.e. the group of
\mynameref{def:automorphism}s of the vector space $V$).
\label{def:grouprepresentation}
\end{definition}
If $L$ is a finite extension of $K$ we can talk about it as about
$K$-vector space. So we have a representation of $G$ as
\mynameref{def:galoisgroup} $Gal\left(L/K\right)$:
$\rho: G \to GL_K\left(L\right)$ - this is something that we have as
the definition because we define the Galois group as the group of
automorphisms of $L$ over $K$.
We can ask the question: what's kind of representation is the
$\rho$. We claim that $\rho$ is something that is called as
\mynameref{def:regularrepresentation}.
\begin{definition}[Regular representation]
Let a vector space $V$ has a basis indexed by elements of group $G$:
$e_g$ where $g \in G$. $\rho_{reg}\left(h\right)$
\footnote{
where $h \in G$.
}
acts by
permutations:
\footnote{
$\rho_{reg}\left(h\right)$ is an \mynameref{def:automorphism} of $V$
i.e.
\[
\rho_{reg}\left(h\right): V \xrightarrow[e_g \to e_{gh}]{} V.
\]
}
\[
\rho_{reg}\left(h\right) e_g = e_{hg}.
\]
\label{def:regularrepresentation}
\end{definition}
We claim that the representation of Galois group is the regular
representation. We have seen that (see proof of the theorem
\ref{thm:primitiveelement})
\[
L \otimes_K \bar{K} \cong \bar{K}^n.
\]
The $\bar{K}^n$ is a \mynameref{def:directsum} of $n$
($n = \left|G = Gal\left(L/K\right)\right|$)
copies of $\bar{K}$.
The sum is indexed by the embeddings of $L$ into
$\bar{K}$.
\footnote{
The embeddings are also noticed as the set of
homomorphisms $Hom_K\left(L, \bar{K}\right)$.
And $\bar{K}^n = \prod_{i=1}^n\bar{K}$ where
$n = \left|Hom_K\left(L, \bar{K}\right)\right|$ (accordingly
(\ref{eq:lec5_AredIsProd})).