-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlecture6.tex
1015 lines (947 loc) · 37.8 KB
/
lecture6.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%% -*- coding:utf-8 -*-
\chapter{Galois correspondence and first examples}
We state and prove the main theorem of these lectures: the Galois
correspondence. Then we start doing examples (low degree,
discriminant, finite fields, roots of unity).
\section{Some further remarks on normal extension. Fixed field}
Some definitions from previous lecture. $L$ over $K$ is
\mynameref{def:galoisextension} if and only if it is a
\mynameref{def:separableextension} and \mynameref{def:normalextension} or
in other words $L$ is a \mynameref{def:splittingfield} of a family of
separable irreducible polynomials over $K$. We also seen (see theorem
\ref{thm:lec5_4}) that in the case of finite extension
$\left[L:K\right] < \infty$ the number of automorphisms
$\left|Aut\left(L/K\right)\right| = \left[L:K\right]$.
There are several remarks on \mynameref{def:normalextension}s which show
that the extensions behave sometimes differently compare to other
types of extensions. Especially we have seen for that an extension
$L$ over $M$ over $K$ was finite or algebraic or separable or purely
inseparable if, and only if, it was true for $L$ over $M$ and $M$ over
$K$. So, for a normal extensions, this is not the case anymore.
\begin{remark}
Let we have a tower of extensions $K \subset L \subset M$. If $M$ is
normal over $K$ then of course the $M$ is normal over $L$. It is
clear because if $M$ is a splitting field of a family of polynomials
over $K$ the one can just consider them as being polynomials over
$L$ and say that $M$ is a splitting field of a family of polynomials
over $L$.
But $L$ does not have to be normal over $K$ (see example
\ref{ex:lec6_1}).
\end{remark}
\begin{example}
Consider
\[
\mathbb{Q} \subset
\mathbb{Q}\left(\sqrt[4]{2}\right)
\subset
\mathbb{Q}\left(\sqrt[4]{2}, i\right)
\]
We have $\mathbb{Q}\left(\sqrt[4]{2}, i\right)$ to be a splitting
field for polynomial $X^4 -2$ but
$\mathbb{Q}\left(\sqrt[4]{2}\right)$ is just a
\mynameref{def:stemfield} (not \mynameref{def:splittingfield}) for this
polynomial. And as result $\mathbb{Q}\left(\sqrt[4]{2}\right)$ is
not a normal over $\mathbb{Q}$.
\label{ex:lec6_1}
\end{example}
\begin{remark}
A quadratic extension
\footnote {
Extensions with degree 2.
}
is normal. This is by formula for roots of a
quadratic equation.
\footnote {
Because a if we have 2 roots $x_1, x_2 \in L \supset K$ then there
exists the following relation $x_2 = k_1 + k_2 x_1$ where $k_1,
k_2 \in K$. I.e. if we know one root then the other is easy
computed and located in the same extension as the first one.
}
If $P$ quadratic over $K$ has 1 root in $L$ then its another root is
also in $L$.
\end{remark}
\begin{remark}
One often has $K \subset L \subset M$ with $L$ normal over $K$, $M$
normal over $L$ but $M$ not normal over $K$ (see example
\ref{ex:lec6_2}).
\end{remark}
\begin{example}
Consider
\[
\mathbb{Q} \subset
\mathbb{Q}\left(\sqrt{2}\right)
\subset
\mathbb{Q}\left(\sqrt[4]{2}\right)
\]
We have $\mathbb{Q}\left(\sqrt{2}\right)$ normal over $\mathbb{Q}$
as well as $\mathbb{Q}\left(\sqrt[4]{2}\right)$ normal over
$\mathbb{Q}\left(\sqrt{2}\right)$ because they both are quadratic
extensions. But
$\mathbb{Q}\left(\sqrt[4]{2}\right)$ is not normal over $\mathbb{Q}$
(as it was mentioned in example \ref{ex:lec6_1})
\label{ex:lec6_2}
\end{example}
We also seen at last lecture the following definition
(see definition \ref{def:setinvariants}):
\begin{definition}[Fixed field]
If $L$ is a field and $G \subset Aut\left(L\right)$ then
\[
L^G = \left\{
x \in L \mid \forall g \in G: g x = x
\right\}
\]
is a fixed field
\label{def:fixedfield}
\end{definition}
If we have a sub-field $K \subset L$ then we can consider the
following group of automorphisms of $L$ over $K$:
$Aut\left(L/K\right)$ in the case if $L$ is normal because otherwise
the group will be too small to give information
about $L$. But in the normal case it makes sense to consider
the group of automorphisms of $L$ over $K$.
We have seen (see (\ref{eq:lec5_2})) that if $L$ is separable over $K$
then
\[
L^{Aut\left(L/K\right)} = K
\]
This is because of the group of automorphisms was permuting the roots
over the minimal polynomial of $x$ over $K$ (see item
\ref{rem:item:lec5_onnormalext_3} in remark
\ref{rem:lec5_onnormalext}).
We also have seen (see theorem \ref{thm:artin}) that if $G$ is finite
the $L$ is \mynameref{def:galoisextension} over $L^G$ and
$\left[L:L^G\right] = \left|G\right|$.
And now we are going to summarize all these in a theorem which is in
fact the main subject of this lecture course and this theorem is
called the Galois correspondence.
\section{The Galois correspondence}
Let $L$ over $K$ be a \mynameref{def:galoisextension}. By definition the
group automorphisms $Aut\left(L/K\right)$ is called
\mynameref{def:galoisgroup} and denoted as $Gal\left(L/K\right)$
\begin{theorem}[Galois correspondence]
\label{thm:galoiscorrespondence}
There are several statements:
\begin{enumerate}
\item If $L$ is finite over $K$ then there is a
\mynameref{def:bijection} between a sub-extension $F$
($K \subset F \subset L$) and a subgroup $H \subset
Gal\left(L/K\right)$. The correspondence is the following
\begin{eqnarray}
F \rightarrow Gal\left(L/F\right)
\nonumber \\
L^H \leftarrow H
\nonumber
\end{eqnarray}
\item The following statement are equivalent (if and only if)
\begin{enumerate}
\item $F$ is Galois over $K$ \label{thm:galoiscorrespondence:item2a}
\item $\forall g \in Gal\left(L/K\right) g\left(F\right) = F$
\label{thm:galoiscorrespondence:item2b}
\item $Gal\left(L/F\right)$ is a \mynameref{def:normalsubgroup} in
$Gal\left(L/K\right)$
\end{enumerate}
In this case $g$ goes to $g$ restricted to $F$: $g \to
\left.g\right|_F$ this is a \mynameref{def:surjection}
$Gal\left(L/K\right) \twoheadrightarrow Gal\left(F/K\right)$ and
the kernel is $Gal\left(L/F\right)$.
\footnote{
The fact is explained at the end of the proof of the theorem and
is used in the claim \ref{claim:galoisquotient} validation.
}
\end{enumerate}
\begin{proof}
\begin{enumerate}
\item Most work have been done before. What have we got by now?
$L^{Gal\left(L/F\right)} = F$ (see (\ref{eq:lec5_2})). We also
have $H \subset Gal\left(L/L^H\right)$.
\footnote{
Ekaterina called the fact obvious but let try to explain it.
From (\ref{eq:lec5_2}) we have
$L^{Gal\left(L/L^H\right)} = L^H$ thus
$\forall h \in H$ it should also satisfy $h \in
Gal\left(L/L^H\right)$ therefore $H \subset
Gal\left(L/L^H\right)$.
}
\mynameref{thm:artin} gives us
$\left[L:L^H\right] = \left|H\right|$ but with theorem
\ref{thm:lec5_4} we also have
$\left[L:L^H\right] = \left|Gal\left(L/L^H\right)\right|$ so one
must have $H = Gal\left(L/L^H\right)$ as soon as the subset $H$
has the same cardinality as the set $Gal\left(L/L^H\right)$ itself.
This means that the maps that we have in the theorem :
$F \rightarrow Gal\left(L/F\right)$ and
$L^H \leftarrow H$ are mutually inverse
\footnote{
We have the following maps:
\[
F \to Gal\left(L/F\right) \to L^{Gal\left(L/F\right)} = F
\]
I.e. $\forall F$ such that $K \subset F \subset L$ we can
construct $H = Gal\left(L/F\right)$ then we can construct
$L^H$ such that (by theorem \ref{thm:artin})
$K \subset L^H \subset L$.
}
and if a map is invertible then there is a \mynameref{def:bijection}.
\item We should proof equivalence of the following statements:
\begin{enumerate}
\item $F$ is Galois over $K$ \label{item:galoiscorrespondence1}
\item $\forall g \in Gal\left(L/K\right), g\left(F\right) = F$
\label{item:galoiscorrespondence2}
\footnote{
$g \in Gal\left(L/K\right)$ operates on $L \supset F$.
}
\item $Gal\left(L/F\right) \triangleleft Gal\left(L/K\right)$
\label{item:galoiscorrespondence3}
\end{enumerate}
\end{enumerate}
Lets show that \ref{item:galoiscorrespondence1} implies
\ref{item:galoiscorrespondence2}. Fix $x \in F$ then the minimal
polynomial $P_{min}\left(x, K\right)$ splits in $L$ but it has a
root in $F$, thus it should have all roots in $F$ by normality.
I. e. as soon as $F$ is a \mynameref{def:normalextension},
$P_{min}\left(x, K\right)$ splits in $F$ (see theorem
\ref{thm:lec5_3}). This means, of course,
that any map from Galois group preserves $F$ since it premutes the
roots: $\forall g \in Gal\left(L/K\right)$ $g$ permutes the roots
of $P_{min}\left(x, K\right)$ and that is the true for any $x \in
F$ therefore $g\left(F\right) \subset F$ since $F$ is generated
(consists of) such roots.
\footnote{
We have the following fact: $x \in F$ then also $g(x) \in F$
i.e. $g(F) \subset F$. For equality $g\left(F\right) = F$ we
have to proof that $\forall g \in Gal\left(L/K\right): F \subset
g\left(F\right)$. Really let $g \in Gal\left(L/K\right)$ then
$g^{-1} \in Gal\left(L/K\right)$ and
$g^{-1}(F) \subset F$ therefore $F = id(F) =
g\left(g^{-1}(F)\right) \subset
g(F)$ i.e. $F \subset g(F)$.
}
Lets show that \ref{item:galoiscorrespondence2} implies
\ref{item:galoiscorrespondence1}. If $g\left(F\right) \subset F$
then all roots of $P_{min}\left(x, K\right)$, $x \in F$, are in $F$
since $g$ permutes those roots or, in other words, since Galois
group acts transitively on
roots of an irreducible polynomial
\footnote{
see also 2d remark \ref{rem:lec5_onnormalext} that says that if
$F$ is normal then $Gal(L/F)$ acts
transitively on the roots of any irreducible polynomial $P \in
F\left[X\right]$.
}
therefore $F$ is normal by
definition.
\footnote{
More clear explanation is below. We have to prove that $F$ is
normal and separable. Normality: $\forall P_{min}\left(x,
K\right)$ splits in $F$ thus the theorem \ref{thm:lec5_3} gives
us the required normality. About separability. We have $K
\subset F \subset L$. $L$ is separable over $K$ as soon as $L$
is Galois extension. Thus theorem \ref{thm:lec3_3} gives us $F$
separability.
}
Lets show that \ref{item:galoiscorrespondence1} and
\ref{item:galoiscorrespondence2} are equivalent to
\ref{item:galoiscorrespondence3} i.e. let $g \in G$,
$g\left(F\right) \subset L$ then if
$h \in Gal\left(L/F\right)$ is such that $\left.h\right|_F = id$
then $\left.g h g^{-1}\right|_{g\left(F\right)} = id$.
\footnote{
The map $g^{-1}$ acts as follows $g^{-1}: g(F) \to F$ i.e. $h$
in $\left.g h g^{-1}\right|_{g\left(F\right)}$ operates on $F$
only therefore
\[
\left.g h g^{-1}\right|_{g\left(F\right)} =
\left.g h_F g^{-1}\right|_{g\left(F\right)} =
\left.g g^{-1}\right|_{g\left(F\right)} = id
\]
}
This means
that $g h g^{-1} \in Gal\left(L/g\left(F\right)\right)$ (see
(\ref{eq:lec5_2})) so the
statement $g\left(F\right) = F$ is the same to say
\[
g Gal\left(L/F\right) g^{-1} = Gal\left(L/F\right)
\]
So apply this to all $g \in Gal\left(L/K\right)$ one can get that
$Gal\left(L/F\right)$ is a \mynameref{def:normalsubgroup} of
$Gal\left(L/K\right)$ by the definition of
\mynameref{def:normalsubgroup}.
Finally if all this statements
(\ref{item:galoiscorrespondence1}
$\Longleftrightarrow$
\ref{item:galoiscorrespondence2}
$\Longleftrightarrow$
\ref{item:galoiscorrespondence3}
) are true then we can consider map (make sense by
\ref{item:galoiscorrespondence2})
\[
\phi: Gal\left(L/K\right)
\xrightarrow[g \to \left.g\right|_F]{}
Gal\left(L/F\right).
\]
This is a \mynameref{def:surjection} by theorem \ref{thm:lec2_3}
\footnote{
We have that $\forall g_F \in Gal\left(L/F\right)$ $g_F$ is a
homomorphism that operates as follows $g_F: F \to \bar{K}$
(note that by the theorem \ref{thm:lec5_3} all homomorphisms on
a normal extension $F$ have the same image namely $F$)
and
therefore it can be extended (by theorem
\ref{thm:lec2_3}) to homomorphism $g: L \to \bar{K}$
i.e. $\forall g_F \in Gal\left(L/F\right), \exists g \in
Gal\left(L/K\right)$ such that $\phi(g) = g_F$. Or in other
words $\phi$ is a \mynameref{def:surjection}.
}
and the kernel $\ker \phi = Gal\left(L/F\right)$ by
definition because the kernel consists of things which are identity on $F$.
\end{proof}
\end{theorem}
\begin{remark}
If $L$ over $K$ is not finite then Galois correspondence is not
\mynameref{def:bijection} i.e. the maps which are in the theorem still
make sense, but they will not be mutually inverse bijections and we
shall see an example (see section \ref{sec:lec6_finitefield} about it).
\label{rem:lec6_gcnotbijection}
\end{remark}
\section{First examples (polynomials of degree 2 and 3)}
\begin{example}[Degree 2]
Let $\left[L:K\right] = 2$ and $char K \ne 2$. The extension $L$ is
generated by a root of
quadratic polynomial i.e. $x \in L \setminus K$ then
$P_{min}\left(x, K\right)$ is quadratic and if we look at the
formula for the root of the equation we will see that the extension
is generated by a root of discriminant $\Delta$:
$L = K\left(\sqrt{\Delta}\right)$.
What can we say about the $Gal\left(L/K\right)$. It consists of 2
elements and there is only one cyclic group of 2 elements
\footnote{
There is only one group of 2 elements \cite{wiki:finitegroup}
}
:
$\mathbb{Z}/2\mathbb{Z}$. Therefore
\[
Gal\left(L/K\right) \cong \mathbb{Z}/2\mathbb{Z}.
\]
The elements of the group is identity and an element that exchanges
the 2 roots i.e. permutes $\sqrt{\Delta}$ and $-\sqrt{\Delta}$.
\end{example}
\begin{example}[Degree 3]
Let $\left[L:K\right] = 3$ and $char K \ne 3$ (separable
extensions) then $L$ is generated by $x$ - root of
degree 3 polynomial $P$ and there are 2 cases
\begin{enumerate}
\item $P$ splits in $L$ therefore $L$ is a Galois extension and
$Gal\left(L/K\right)$ is the Galois group but the
Galois group of 3 elements must be cyclic
\footnote{
There is only one group of 3 elements
and it is cyclic \cite{wiki:finitegroup}.
}
i.e.
$Gal\left(L/K\right) \cong \mathbb{Z}/3\mathbb{Z}$ - cyclic
group of order 3.
\item $P$ does not split in $L$ then there exists
$M = K\left(x_1, x_2, x_3\right)$ - splitting field where
$x_{1,2,3}$ are roots of $P$ and $L = K\left(x_1\right)$. $M$ is
Galois extension and the Galois group is embeded into a group of
permutation of 3 elements (because Galois group permutes the roots):
$Gal\left(M/K\right) \hookrightarrow S_3$.
As soon $L \subsetneq M$ then $\left[M:K\right] > 3$ so
$Gal\left(M/K\right) = S_3$. In particular
$\left[M:K\right] = \left|S_3\right| = 6$
\end{enumerate}
If you see a cubic polynomial how will you decide is its Galois
group is cyclic or $S_3$? This is determined by a
\mynameref{def:discriminant} of polynomial which is a subject of
next section (see example \ref{ex:lec6_discriminant3degree}
and proposition \ref{prop:lec6_1}).
\label{ex:lec6_degree3}
\end{example}
\section{Discriminant. Degree 3 (cont'd). Finite fields}
\subsection{Discriminant}
\begin{definition}[discriminant]
Let $P \in K\left[X\right]$. The polynomial has the following roots
in $\bar{K}$: $x_1, x_2, \dots, x_n$. The following product is
called discriminant:
\[
\Delta = \prod_{i < j} \left(x_i - x_j\right)^2
\]
\label{def:discriminant}
\end{definition}
If we take group $G = Gal\left(P\right)$ then
$G \subset S_n$ and any permutation preserves $\Delta$ and as result
we have $\Delta \in K$ (see (\ref{eq:lec5_2})).
Lets take a root of discriminant (we have to choose some roots order
for this operation) then
\[
\sqrt{\Delta} = \prod_{i < j} \left(x_i - x_j\right)
\]
this quantity is preserved only by even
\footnote{
You can see from definition \ref{def:paritypermutation} and example
\ref{ex:paritypermutation} that for even permutations each insertion
is equivalent to a root exchange. If the number of such exchange is
even then we can return the changed root of a discriminant to its original
form with event steps. Each step changes the sign and as result the
even steps will not change the sign.
}
(and not by odd) permutations.
\begin{proposition}
Let $G = Gal\left(P\right)$ - \mynameref{def:galoisgroup} then $G
\subset A_n$
\footnote {
$A_n$ is a group of even permutations
}
if and only if $\sqrt{\Delta} \in K$.
\begin{proof}
Since if the Galois group is even then, this will be preserved by
an element of Galois group and so will be in $K$ and conversely, if
it is an element of $K$, then it must be preserved by the Galois
group, but we know it is preserved only by even permutations.
\end{proof}
\label{prop:lec6_1}
\end{proposition}
If we return to our example \ref{ex:lec6_degree3} we can get the
following one
\begin{example}[Discriminant of polynomial degree 3]
Lets compute the discriminant for the following polynomial:
$X^3 + p X + q$.
\footnote {
$X^2$ element can be always hidden via a variable change. Thus the
polynomial can be considered as a common case for cubic polynomials.
}
The discriminant easy to compute:
\footnote{
The below explanation was taken from
\cite{mathstackexchange:discriminant3}.
The discriminant is a polynomial of degree 6. $p$ can be
represented as a polynomial of degree 2. $q = - X^3 - p X$ is a
polynomial of degree 3. The discriminant therefore can be
represented as follows $\Delta = a p^3 + b q^2$ where $a,b$ are
numbers. Let $p = -1, q = 0$ then the polynomial $X^3 - X$ has 3
roots: $-1, 0, 1$. It is easy to compute discriminant
$\Delta = (0 + 1)^2(0 - 1)^2(1+1)^2 = 4$ therefore $a = -4$.
For the case $p = 0, q = -1$ we will get the polynomial $X^3 - 1$
with roots $1, \zeta, \zeta^2$. We also have
\[
\zeta^2 + \zeta + 1 = 0
\]
therefore
\[
\left(\zeta - 1\right)^2 = \zeta^2 - 2 \zeta + 1 = - 3 \zeta
\]
and
\[
\left(\zeta + 1\right)^2 = \zeta^2 + 2 \zeta + 1 = \zeta
\]
thus
\begin{eqnarray}
\Delta = \left(\zeta - 1\right)^2\left(\zeta^2 -
1\right)^2\left(\zeta^2 - \zeta\right)^2 =
\nonumber \\
= \left(\zeta - 1\right)^2 \left(\zeta - 1\right)^2
\left(\zeta + 1\right)^2 \zeta^2 \left(\zeta - 1\right)^2 =
\nonumber \\
= \left(- 3 \zeta\right)^3 \zeta^3 = -27.
\nonumber
\end{eqnarray}
As result $b=-27$.
}
\(
\Delta = -4 p^3 - 27 q^2
\).
So if $\Delta$ is a square in $K$ then $Gal\left(P\right) \cong A_3$
(cyclic of order 3)
\footnote{
See example \ref{ex:s3group} about groups $S_3$ and
\mynameref{def:alternatinggroup} $A_3$.
}
. If not then $Gal\left(P\right) \cong S_3$ (non
commutative group of 6 elements).
What can we say about sub-extensions for the two cases? Let $M$ is a
splitting field of $P$ over $K$ then for the first case there is no
any sub-extension. For the second case there are several
sub-extensions (they are determined by sub-groups of the Galois
group: $S_3$ for our case). Especially we have 3 sub-extension of
degree 3:
\footnote{
because $x_1, x_2, x_3$ are roots of a cubic polynomial
}
$K\left(x_1\right)$, $K\left(x_2\right)$ and
$K\left(x_3\right)$, fixed by non-normal sub-groups of order 2 -
because $M$ is degree 2 over $K\left(x_{1,2,3}\right)$.
\footnote{
$K\left(x_i\right) = M^{Gal\left(M/K\left(x_i\right)\right)}$ and
$Gal\left(M/K\left(x_i\right)\right)$ has order 2, as soon as
$\left[M:K\left(x_i\right)\right] = 2$,
i.e.
$Gal\left(M/K\left(x_i\right)\right) \cong \mathbb{Z}/2\mathbb{Z}$
- transposition of roots
}
And we have
one quadratic sub-extension
(of degree 2) fixed by $A_3 \subset S_3$ this is
$K\left(\sqrt{\Delta}\right)$.
\footnote{
The extension should be $K\left(\alpha\right)$ where $\alpha$ is a
root of a quadratic polynomial and $\alpha \notin
K$ but $\alpha \in M$. $\sqrt{\Delta}$ is a good choice for the
sub-extension
generator because $\sqrt{\Delta} \notin K$ but $\sqrt{\Delta} \in
M$ and $\sqrt{\Delta}$ - is a root of a quadratic polynomial
i.e. it generates a quadratic extension. In the case
$K\left(\sqrt{\Delta}\right) =
M^{Gal\left(M/K\left(\sqrt{\Delta}\right)\right)} = M^{A_3}$ i.e.
$Gal\left(M/K\left(\sqrt{\Delta}\right)\right) = A_3$.
}
\mynameref{thm:galoiscorrespondence} says us that there are no other
sub-extensions. Because those sub extensions correspond objectively
to subgroups of the \mynameref{def:galoisgroup}. And in this case, it
does not have so many subgroups. These are just three subgroups of order 2
generated by transpositions, and one subgroup of order 3 generated
by a three cycle.
\label{ex:lec6_discriminant3degree}
\end{example}
\subsection{Finite fields. An infinite degree example}
\label{sec:lec6_finitefield}
We have seen that theory of finite fields is easy. Especially all
\mynameref{def:galoisgroup}s are cyclic (see corollary
\ref{cor:lec3_2}). I.e. we have the field $\mathbb{F}_{p^n}$ over
$\mathbb{F}_{p}$. The Galois group is cyclic and generated by
Frobenius map (see remark \ref{rem:frobeniushomomorphism}) which is
$F_p: x \to x^p$.
More interesting are infinite extensions of a finite field, for
instance the \mynameref{def:algebraicclosure}.
Thus consider $\bar{\mathbb{F}}_p$ as an extension of
$\mathbb{F}_p$. If we take an invariant generated by Frobenius $F_p$
\footnote {
The group generated by one element $F_p$ is denoted as $\left<F_p\right>$.
}
then
\footnote{
It required some explanation. $\left<F_p\right>$ consists of powers
of Frobenius map: $F_p, F_{p^2}, \dots, F_{p^n}, \dots$, we also
have that $\bar{\mathbb{F}}_p^{F_{p^n}} = \mathbb{F}_{p^n}$
(This is because $\forall x \in \mathbb{F}_{p^n}:
F_{p^n}\left(x\right) = x^{p^n} = x$). Therefore
\[
\bar{\mathbb{F}}_p^{\left<F_p\right>} =
\cap_n \mathbb{F}_{p^n} = \mathbb{F}_p
\]
}
\[
\bar{\mathbb{F}}_p^{\left<F_p\right>} = \mathbb{F}_p
\]
but
\[
Gal\left(\bar{\mathbb{F}}_p/\mathbb{F}_p\right) \ne
\left<F_p\right>
\]
therefore there is no bijective correspondence between sub-fields and
sub-groups. In particular the \mynameref{thm:galoiscorrespondence} is
not \mynameref{def:bijection} (as it was mentioned at remark
\ref{rem:lec6_gcnotbijection})
So how to see that the Galois group is not cyclic:
$Gal\left(\bar{\mathbb{F}}_p/\mathbb{F}_p\right) \ne
\left<F_p\right>$?
Really a smaller group is not cyclic.
\footnote{
We have a theorem that a subgroup of a cyclic group is cyclic
(see \mynameref{thm:fundamentaltheoremofcyclicgroup}).
This
means that if the whole group is cyclic then the smaller group has
to be a cyclic too.
}
Lets look at the following:
\[
\mathbb{F}_p \subset \mathbb{F}_{p^2} \subset \dots
\mathbb{F}_{p^{2^n}} \subset \dots
\]
and let
\[
L = \cup \mathbb{F}_{p^{2^n}}
\]
We claim that $Gal\left(L/\mathbb{F}_p\right)$ is not cyclic. Consider
the following number $a_n = 1+ 2 + 4 + \dots + 2^n$ then
$\forall x \in \mathbb{F}_{p^{2^n}}$
\begin{equation}
F_p^{a_n}\left(x\right) = F_p^{a_m}\left(x\right)
\label{eq:lec6_finitefieldinfinite1}
\end{equation}
for any $m > n$.
\footnote{
If $F_p^{2^{n+l}} = id$ (see below in the text) then
\begin{eqnarray}
F_p^{a_m}\left(x\right) = F_p^{a_n + 2^{n + 1} + 2^{n+2} + \dots +
2^m}\left(x\right) =
\nonumber \\
= F_p^{a_n}\left(F_p^{2^{n + 1} + 2^{n+2} + \dots +
2^m}\left(x\right)\right) =
F_p^{a_n}\left(id\left(x\right)\right) =
F_p^{a_n}\left(x\right).
\nonumber
\end{eqnarray}
}
This is because the Frobenius map $F_p$ sends $x$ to $x^p$ is an
identity on $\mathbb{F}_p$ therefore $F_p^{2^{n+l}}$ is identity on
$\mathbb{F}_{p^{2^n}}$ $\forall l \ge 0$.
\footnote{
For example consider $F_p^{2^{n+1}}$ and let $x \in x
\in \mathbb{F}_{p^{2^n}}$. We have
\begin{eqnarray}
F_p^{2^{n+1}}\left(x\right) =
F_p^{2^n \cdot 2}\left(x\right) =
F_p^{2^n + 2^n}\left(x\right) =
\nonumber \\
=
F_p^{2^n}\left(F_p^{2^n}\left(x\right)\right) =
F_p^{2^n}\left(x^{2^n}\right) =
F_p^{2^n}\left(x\right) = x^{2^n} = x.
\nonumber
\end{eqnarray}
}
This implies
that
there exists an automorphism $\phi: L \to L$ such that
$\forall n \ge 0$
\footnote{
??? We can say that $\phi$ maps $L$ to $L$. If equation
(\ref{eq:lec6_finitefieldinfinite}) holds for an arbitrary large $N$
(i.e. informally $\mathbb{F}_{p^{2^N}}$ very
close to $L$)
then it also holds $\forall n < N$ because
(\ref{eq:lec6_finitefieldinfinite1})
}
\begin{equation}
\left.\phi\right|_{\mathbb{F}_{p^{2^n}}} = F^{a_n}
\label{eq:lec6_finitefieldinfinite}
\end{equation}
but $\forall k \in \mathbb{Z}$ $F_p^k \ne \phi$.
\footnote{
i.e. $\phi \notin \left<F_p\right>$
}
One can look at
$\phi$ as $\phi = F_p^{1+2+4+ \dots + 2^n + \dots}$ but this is, of
course, very informal.
\footnote{
Using (\ref{eq:lec6_finitefieldinfinite}) ``informally'' one can get
\[
\phi = \left.\phi\right|_L =
\lim_{n \to \infty}\left.\phi\right|_{\mathbb{F}_{p^{2^n}}} =
\lim_{n \to \infty} F^{a_n} =
F^{1
+2 +4 + \dots + 2^n + \dots}
\]
}
The rigorous conclusions we can draw from this
is that our Galois group is not a cyclical group generated by the
Frobenius map i.e.
$Gal\left(\bar{\mathbb{F}}_p/\mathbb{F}_p\right) \ne
\left<F_p\right>$. And also, that we don't have a bijective Galois
correspondents like we have for finite field extensions i.e no
bijective correspondents between sub-groups
of the Galois group and sub-extensions. Indeed the fixed field of the
$F_p$ and and the whole Galois group coincide.
\section{ Roots of unity: cyclotomic polynomials}
Consider a number $n$ that is prime to
\mynameref{def:fieldcharacteristic} of $K$:
$\left(n, char\left(K\right)\right) = 1$ and consider the polynomial
$P_n = X^n - 1$ (if $\left(n, char\left(K\right)\right) = 1$
then the
polynomial has no multiple roots)
\footnote{
if $\left(n, char\left(K\right)\right) = 1$ then $P_n' = n X^{n-1}
\not \equiv 0 \mod char\left(K\right)$ and as result
$gcd\left(P_n, P_n'\right) = 1$ i.e. $P_n$ does not have multiple
roots.
}
. Thus the polynomial has exactly $n$
roots which form a cyclic (see definition\ref{def:cyclicgroup})
multiplicative subgroup of $\bar{K}^\times$
(see definition \ref{def:multiplicativegroup})
\footnote{
$\exists x \in \mu_n$ such that $x^n = 1$ i.e. $x$ is a root of $P_n$.
}
denoted by $\mu_n$. So $\mu_n$ is just the group of $n$ roots of unity
in $\bar{K}^\times$.
\begin{definition}[Primitive roots of unity]
There are root of unity of degree $n$ such that not root of unity of
degree $d < n$.
\label{def:primitiverootsofunity}
\end{definition}
The set of \mynameref{def:primitiverootsofunity} is denoted as
$\mu_n^*$. All elements of $\mu_n$ are powers of a single one:
$\forall x \in \mu_n, \exists a \in \mathbb{N}: x = \zeta^a$ for some
$\zeta \in \mu_n$. And primitive roots of unity form the following set
$\left\{\zeta^a\right\}$ where $\left(a, n\right) = 1$.
\label{sec:lec6_5_primitiveroot}
\footnote{
The fact require a proof. Consider case $\left(a, n\right) = k >
1$. Thus $\frac{n}{k}, \frac{a}{k} \in \mathbb{Z}$ and we can
get
\[
\left(\zeta^a\right)^{\frac{n}{k}} =
\left(\zeta^{\frac{a}{k}}\right)^n = 1
\]
therefore $\zeta^a$ is a root of $X^{\frac{n}{k}} - 1$ and as soon
as $\frac{n}{k} < n$ we conclude that $\zeta^a \notin \mu_n^\ast$
(but $\zeta^a \notin \mu_n$) i.e. $\zeta^a$ is not a
\mynameref{def:primitiverootsofunity}.
}
The number of
such primitive roots is determined by \mynameref{def:eulerfuction}:
$\left|\mu_n^*\right| = \phi\left(n\right)$.
\footnote{
That is by definition of \mynameref{def:eulerfuction} that counts the
positive integers up to a given integer $n$ that are relatively
prime to $n$
}
\begin{definition}[$n$-th cyclotomic polynomial]
The polynomial
\[
\Phi_n = \prod_{\alpha \in \mu_n^*}\left(X - \alpha\right) \in \bar{K}\left[X\right]
\]
is called $n$-th cyclotomic polynomial.
\label{def:cyclotomicpolynomial}
\end{definition}
\begin{example}[$n$-th cyclotomic polynomial]
\[
\Phi_1 = X - 1
\]
\[
\Phi_2 = \frac{X^2 - 1}{X-1} = X + 1
\]
\[
\Phi_3 = \frac{X^3 - 1}{X-1} = X^2 + X + 1
\]
\[
\Phi_4 = \frac{X^4 - 1}{\left(X-1\right)\left(X + 1\right)} = X^2 + 1
\]
\[
\Phi_5 = X^4 + X^3 + X^2 + 1
\]
\end{example}
\begin{gapexample}[Cyclotomic polynomial]
There are several ways to get a \nameref{def:cyclotomicpolynomial}
in GAP \cite{url:gap}. Consider 7th cyclotomic polynomial.
We can use the fact that
$\Phi_7 = P_{min}\left(\zeta_7,\mathbb{Q}\right)$:
\begin{verbatim}
gap> x:=Indeterminate(Rationals,"x");;
gap> zeta:=E(7);;
gap> MinimalPolynomial(Rationals, zeta);
x^6+x^5+x^4+x^3+x^2+x+1
gap>
\end{verbatim}
I.e. $\Phi_7 = P_{min}\left(\zeta_7,\mathbb{Q}\right) =
X^6+X^5+X^4+X^3+X^2+X+1$.
Another way to get the same answer is
\begin{verbatim}
gap> x:=Indeterminate(Rationals,"x");;
gap> CyclotomicPolynomial(Rationals,7);
x^6+x^5+x^4+x^3+x^2+x+1
\end{verbatim}
\end{gapexample}
\begin{proposition}
\begin{enumerate}
\item
\(
P_n = \prod_{d \mid n} \Phi_d
\)
\item $\Phi_n$ has coefficients in \mynameref{def:primefield}s:
$\mathbb{Q}$ if $char K = 0$ or
$\mathbb{F}_p$ if $char K = p$
\item If $char K = 0$ then $\Phi_n \in
\mathbb{Z}\left[X\right]$. If $char K = p$ then $\Phi_n$ is the
reduction $\mod{p}$ of the \mynameref{def:cyclotomicpolynomial}
over $\mathbb{Z}$.
\end{enumerate}
\begin{proof}
The proof was marked as an exercise in the lectures
The first item proof is the following. The $X^n - 1$ has $n$ roots and
lets $\zeta$ is one of the
root. Let $d=ord\left(\zeta\right)$ i.e. $\zeta^d = 1$ from other side
$\zeta^n = 1$ i.e. $d \mid n$. Therefore $\zeta \in \mu_d^\ast$
i.e. $\zeta$ is a root of $\Phi_d$. Thus any root $X^n - 1$ will
also be a root of $\prod_{d \mid n} \Phi_d$.
From other side for any root $\zeta'$ of $\prod_{d \mid n}
\Phi_d$ exists $d$ such that $\zeta'$ will be a root of $\Phi_d$
and as soon as $d \mid n$ then $\exists l \in \mathbb{Z}: n = d
\cdot l$ therefore $\left(\zeta'\right)^n =
\left(\left(\zeta'\right)^d\right)^l = 1$ i.e. $\zeta'$ is also
a root of $X^n - 1$. The both polynomial
are \mynameref{def:monicpolynomial}s and therefore are the same.
Lets consider case
$char(K) = 0$ (for the second and third parts) and lets proof that
in the case $\Phi_d$ has coefficients in
$\mathbb{Z}$. Lets proof by induction. The case $n$ is trivial
because
$\Phi_1 = X - 1$. Let for any $d < n$ we have that $\Phi_d$ has
integer coefficients. Then using
\[
P_n = \prod_{d \mid n} \Phi_d
\]
we can get
\[
\Phi_n = \frac{X^n-1}{\prod_{d \mid n, d \ne n} \Phi_d}
\]
using the fact that $\prod_{d \mid n, d \ne n} \Phi_d$ has integer
coefficients (by induction hypothesis) we can conclude that
$\Phi_n$ has coefficients in $\mathbb{Q}$. Then using
\mynameref{lem:gauss} we can conclude that $\Phi_n \in
\mathbb{Z}\left[X\right]$.
Finally using
\[
P_n = X^n - 1 = P_n \mod p = \prod_{d \mid n} \left(\Phi_d \mod p\right)
\]
one can conclude that if $char K = p$ then $\Phi_n$ is the
reduction $\mod{p}$ of the \mynameref{def:cyclotomicpolynomial}
over $\mathbb{Z}$.
\end{proof}
\label{prop:lec6_cyclotomic}
\end{proposition}
\section{Irreducibility of cyclotomic polynomial.The Galois group}
\begin{theorem}
Let $char(K) = 0$, then $\Phi_n$ is irreducible in
$\mathbb{Q}\left[X\right]$
(it amounts to the same to say that this is irreducible in
$\mathbb{Z}\left[X\right]$ as we know).
\begin{proof}
We have to prove that all \mynameref{def:primitiverootsofunity} have
the same minimal polynomial over $\mathbb{Q}$. It must be $\Phi_n$
by degree reason.
Let fix one primitive root $\zeta$ and all others have the form
$\zeta^a$ where $a$ is prime to $n$: $\left(a,n\right)=1$.
\footnote{
as it was mentioned at the section \ref{sec:lec6_5_primitiveroot}.
}
If we
can show these for $a$
prime then we can also show this for all $a$.
\footnote{
Let $a = l \cdot k$ where $l$ and $k$ are prime. We have (as it
will be proved later) that $\nu = \zeta^l$ and $\zeta$ are roots of the
same minimal polynomial. $\nu^k$ will also be a root of that
minimal polynomial (if $\nu$ is a root and $k$ is prime than
$\nu^k$ will also be a root of the same polynomial), but
$\nu^k = \zeta^{k \cdot l} = \zeta^a$.
}
Thus we may
assume that $a$ is a prime number $l$
and suppose
\[
P_{min}\left(\zeta, \mathbb{Q}\right)
\ne
P_{min}\left(\zeta^l, \mathbb{Q}\right).
\]
Then $\Phi_n = f \cdot g$ where $f$ has $\zeta$ as a root and $g$
has $\zeta^l$ as a root. This is true in
$\mathbb{Q}\left[X\right]$ but also as we seen
\footnote{
$\Phi_n \in \mathbb{Z}\left[X\right]$ (see proposition
\ref{prop:lec6_cyclotomic}). \mynameref{lem:gauss} says that
if $\Phi_n$ is reducible than they factors are also in
$\mathbb{Z}\left[X\right]$.
}
in
$\mathbb{Z}\left[X\right]$. So we have $g\left(\zeta^l\right) = 0$
thus we can define $g_l\left(X\right) = g\left(X^l\right)$ then
$g_l$ will have $\zeta$ as a root. But $g_l \equiv g^l \mod l$.
\footnote{
Using $g\left(X\right) = a_n X^n + \cdots + a_1 X + a_0$ we can get
\begin{eqnarray}
g^l\left(X\right) = \left(a_n X^n + \cdots + a_1 X +
a_0\right)^l =
\nonumber \\
= a_n {X^l}^n + \cdots + a_1 {X^l} +
a_0 + l \cdot \left( \dots \right) \equiv g_l \mod l
\nonumber
\end{eqnarray}
}
Thus in
modulo $l$ $\Phi_n$ has $\zeta$ as a multiple root. This is
impossible because $\Phi_n$ divides $P_n$ and this does not have
multiple roots whenever $l$ prime to $n$.
\end{proof}
\label{thm:lec6_2}
\end{theorem}
\begin{remark}
Statements of theorem \ref{thm:lec6_2} are not true if $char(K) >
0$. I.e. over $\mathbb{F}_p$ $\Phi_n$ is not always irreducible.
For instance $\Phi_8 = X^4 + 1$ is reducible over $\mathbb{F}_p$ for
any $p$. For instance $p = 2$
\footnote{
$1$ is a root because $1^4 + 1 = 2 \equiv 0 \mod 2$. Therefore
$\Phi_8 = X^4 + 1$ is reducible over $\mathbb{F}_2$
}
In fact it splits in $\mathbb{F}_{p^2}$.
This is because if $p$ is odd then $8\mid p^2-1$ so the
\mynameref{def:multiplicativegroup}
$\mathbb{F}_{p^2}^\times$ contains a cyclic subgroup of order 8 which is
exactly the group of 8 roots of unity.
\end{remark}
The main theorem about cyclotomic extensions is the following
\begin{theorem}
The splitting field $L$ of $P_n$ over $K$ is $K\left(\zeta\right)$,
where $\zeta$ is a root of $\Phi_n$.
$\forall g \in Gal\left(L/K\right)$ acts by $g: \zeta \to
\zeta^{a_g}$ where $\left(a_g, n\right) = 1$.
$Gal\left(L/K\right) \hookrightarrow
\left(\mathbb{Z}/n\mathbb{Z}\right)^\times$ and this is an isomorphism
whenever $\Phi_n$ is irreducible over $K$ (for example $K
=\mathbb{Q}$).
\begin{proof}
\begin{enumerate}
\item All $n$-th roots of unity are powers of $\zeta$ so they
are in $K\left(\zeta\right)$.
\item Thus any $g \in Gal\left(L/K\right)$ induces an
automorphism of $\mu_n \subset L$ and all such automorphisms
are raising a root to a power that is prime to $n$.
\footnote{
This is because $\forall g \in Gal\left(L/K\right)$
$g$ permutes roots of the irreducible polynomial
$\Phi_n$. The roots a generated by means of $\zeta \to
\zeta^{a_g}$, where $\left(a_g, n\right) = 1$. Therefore
we can associate a root permutation (i.e. $g$) with the
following map $\zeta \to
\zeta^{a_g}$, where $\left(a_g, n\right) = 1$.
}
\item $Gal\left(L/K\right) \hookrightarrow
Aut\left(\mu_n\right) \cong
\left(\mathbb{Z}/n\mathbb{Z}\right)^\times$. That
\footnote{
$Gal\left(L/K\right) \hookrightarrow
Aut\left(\mu_n\right)$
}
is because if a $g$ is an identity on $\mu_n$ then it is also
identity on $L$ because $\mu_n$ generates $L$ over $K$
\footnote{
We have to proof there that $Gal\left(L/K\right) \hookrightarrow
Aut\left(\mu_n\right)$ is an \mynameref{def:embedding}
i.e. \mynameref{def:injection} that preserves the group
structure. The injection was proved before because for
$g_1,g_2 \in Gal\left(L/K\right)$ such that $g_1 \ne g_2$ we
have two different root exchange $\zeta \to \zeta^{a_{g_1}}$ and
$\zeta \to \zeta^{a_{g_2}}$. About structure preserving if
$f: g \to \left(\zeta \to \zeta_a\right)$ then easy check
that $f\left(g_1 g_2\right) = f\left(g_1 \left) f\right(
g_2\right)$ and that there is a homomorphism. By the way any
embedding should preserve the identity element that was
shown by Ekaterina.
Comments from staff about the identity preserving: The proof
of injectivity in the lecture goes as follows: take