-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlecture3.tex
1102 lines (1026 loc) · 39.6 KB
/
lecture3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%% -*- coding:utf-8 -*-
\chapter{Finite fields. Separability, perfect fields}
We recall the construction and basic properties of finite fields. We
prove that the multiplicative group of a finite field is cyclic, and
that the automorphism group of a finite field is cyclic generated by
the Frobenius map. We introduce the notions of separable (resp. purely
inseparable) elements, extensions, degree. We briefly discuss perfect
fields.
\section{An example (of extension)s. Finite fields}
\begin{corollary}
\mynameref{def:algebraicclosure} of $K$ is unique up to
\mynameref{def:isomorphism} of K-algebras
\footnote{
There is a redefinition of corollary
\ref{col:algebraic_closure_isomorphism}.
}
\label{col:lec3_1}
\end{corollary}
\begin{corollary}
Any \mynameref{def:algebraicextension} of $K$ embeds (see
definition \ref{def:embedding}) into the
\mynameref{def:algebraicclosure} \footnote{
i.e. $\forall E$ - algebraic extension of $K$,
$\exists \phi: E \to \bar{K}$ - \mynameref{def:homomorphism}. The
statement is a reformulation
of theorem \ref{thm:lec2_3}}
\label{col:lec3_2}
\end{corollary}
\begin{example}[Of extension of homomorphism]
Let $K = \mathbb{Q}$ and $\overline{\mathbb{Q}}$ is the
\mynameref{def:algebraicclosure} of $K$. For instance we can consider
$\overline{\mathbb{Q}} \subset \mathbb{C}$.
\footnote{
Really $\overline{\mathbb{Q}} = \mathbb{A}$ - the set of all algebraic
numbers, i.e. roots of polynomials $P \in
\mathbb{Q}\left[X\right]$.
}
Let
\[
L = \mathbb{Q}\left(\sqrt{2}\right) =
\mathbb{Q}\left[X\right]/\left(X^2 - 2\right),
\]
$\alpha$ is a \mynameref{def:class} of $X$ in $L$. $L$ has 2
\mynameref{def:embedding}s into
$\overline{\mathbb{Q}}$
\begin{enumerate}
\item $\phi_1: \alpha \to \sqrt{2}$
\item $\phi_2: \alpha \to -\sqrt{2}$
\end{enumerate}
Let
\[
M = \mathbb{Q}\left(\sqrt[4]{2}\right) =
\mathbb{Q}\left[Y\right]/\left(Y^4 - 2\right),
\]
$\beta$ is a \mynameref{def:class} of $Y$ in $M$. $M$ has 4
\mynameref{def:embedding}s into
$\overline{\mathbb{Q}}$
\begin{enumerate}
\item $\psi_1: \beta \to \sqrt[4]{2}$ (extends $\phi_1$)
\item $\psi_2: \beta \to -\sqrt[4]{2}$ (extends $\phi_1$)
\item $\psi_3: \beta \to i\sqrt[4]{2}$ (extends $\phi_2$)
\item $\psi_4: \beta \to -i\sqrt[4]{2}$ (extends $\phi_2$)
\end{enumerate}
This (``extends'') is because
\footnote{
I.e. in our case we have $\mathbb{Q} \subset L \subset M$. We have
$\phi_{1,2} : L \to \overline{\mathbb{Q}}$ which can be extended
(accordingly theorem \ref{thm:lec2_3}) to
$\psi_{1,2,3,4} : M \to \overline{\mathbb{Q}}$
}
\[
M = L\left[Y\right]/\left(Y^2 - \alpha\right)
\]
\label{ex:homomorphismext}
\end{example}
\subsection{Finite fields}
\begin{definition}[Finite field]
$K$ is a finite field if it's \mynameref{def:fieldcharacteristic}
$char K = p$, where $p$
- prime number
\label{def:finitefield}
\end{definition}
\begin{remark}[$\mathbb{F}_{p^n}$]
If $K$ is a finite extension of $\mathbb{F}_p$
\footnote{
i.e. $\left[K:\mathbb{F}_p\right] < \infty$
}
and
$n = \left[K:\mathbb{F}_p\right]$ then number of elements of $K$:
$\left|K\right| = p^n$. The following notation is also used for a
finite extension of a finite field: $\mathbb{F}_{p^n}$
\footnote{
As we know $\mathbb{F}_p = \mathbb{Z}/p \mathbb{Z}$. From other
side $\mathbb{F}_{p^n} \ne \mathbb{Z}/p^n \mathbb{Z}$.
For example $\mathbb{F}_4 \ne \mathbb{Z}/4 \mathbb{Z}$ because
$\mathbb{Z}/4 \mathbb{Z}$ is not a field ($2 \cdot 2 = 0$
i.e. zero divisors exist). You have to look at example
\ref{ex:F2overP} to see exact structure of $\mathbb{F}_4$.
}
\label{rem:fpn}
\end{remark}
\begin{remark}[Frobenius homomorphism]
If $char K = p$, then exists a \mynameref{def:homomorphism}
$F_p: K \to K$ such that $F_p\left(x\right) = x^p$.
Really if we consider $\left(x+y\right)^p$ and $\left(xy\right)^p$
then we can get $\left(x+y\right)^p = x^p + y^p$
\footnote{
\[
\left(x+y\right)^p = \sum_{k=0}^p {p \choose k} x^k y^{p-k} =
x^p + y^p + p \cdot \left( \sum_{k=1}^{p-1} a_k x^k y^{p-k} \right),
\]
where $a_k \in \mathbb{Z}$. I.e.
\[
\left(x+y\right)^p \equiv
\left(x^p + y^p\right) \mod p
\]
}
and
$\left(xy\right)^p = x^p y^p$. The second property is the truth in
the all fields (of course) but the first one is the special property
of $\mathbb{F}_p$ fields.
\label{rem:frobeniushomomorphism}
\end{remark}
\begin{remark}
Also $F_{p^n} : K \to K$ such that $F_{p^n}\left(x\right) = x^{p^n}$
is also homomorphism (a power of \mynameref{rem:frobeniushomomorphism}.
\label{rem:frobeniuspowerhomomorphism})
\end{remark}
\section{Properties of finite fields}
\begin{theorem}
Lets fix $\mathbb{F}_p$ and it's \mynameref{def:algebraicclosure}
$\overline{\mathbb{F}_p}$.
The \mynameref{def:splittingfield} of $x^{p^n} - x$ has $p^n$
elements. Conversely any field of $p^n$ elements is a splitting
field of $x^{p^n} - x$. Moreover there is an unique sub extension of
$\overline{\mathbb{F}_p}$ with $p^n$ elements.
\begin{proof}
Note that $F_{p^n} : x \to x^{p^n}$ is a
\mynameref{def:homomorphism} (see remark
\ref{rem:frobeniuspowerhomomorphism}) as result the following set
$\{
x \mid F_{p^n}\left(x\right) = x
\}$ is a field containing $\mathbb{F}_p$
\footnote{
For $x \in \mathbb{F}_p^{\times} = \mathbb{F}_p \setminus \{0\}$ we
have that (see theorem \ref{thm:abelianelement})
\[
x^{\left|\mathbb{F}_p^{\times}\right|} = x^{p-1} = 1
\]
and therefore $\forall x \in \mathbb{F}_p: x^p = x$ ($x = 0$
also satisfied the equation). We can continue as follows
\begin{eqnarray}
x^{p^2} = \left(x^p\right)^p = x^p = x,
\nonumber \\
x^{p^3} = \left(x^{p^2}\right)^p = x^p = x
\nonumber \\
\dots
\nonumber \\
x^{p^n} = \left(x^{p^{n-1}}\right)^p = x^p = x
\nonumber
\end{eqnarray}
and finally get
$F_{p^n}\left(x\right) = x$.
Thus $\forall x \in \mathbb{F}_p$ we also have
$x \in \{
x \mid F_{p^n}\left(x\right) = x
\}$
}
i.e.
\[
\mathbb{F}_p \subset
\left\{
x \mid F_{p^n}\left(x\right) = x
\right\}
\]
or, in other words, the considered set is a \mynameref{def:fextension1} of
$\mathbb{F}_p$.
If $Q_n\left(X\right) = X^{p^n} - X$ then the considered set
consists of the root of the polynomial $Q_n$. The polynomial has
no multiple roots because $gcd(Q_n, Q_n') = 1$.
\footnote{
If $Q_n$ has a multiple root $\beta$ then it is divisible by
$\left(X - \beta\right)^2$ and the $Q_n'$ is divisible by (at
least) $\left(X - \beta\right)$ thus the $\left(X -
\beta\right)$ should be a part of gcd.
}
This is because $Q_n' \equiv 1 \mod p$.
\footnote{
Really we have the following one $Q_n' = p^n X^{p^n - 1} - 1
\equiv -1 \mod p$ but the sign is not really matter because
$\gcd\left(Q_n, -1\right) = \gcd\left(Q_n, 1\right) = 1$.
}
As soon as $Q_n$ has no multiple roots then there are $p^n$
different roots and therefore the splitting field is the field
with $p^n$ elements.
Conversely lets $\left|K\right| = p^n$ and
$\alpha \ne 0 \in K$.
Using the fact that the multiplication group of $K$ has $p^n - 1$
elements: $\left|K^\times\right| = p^n - 1$
\footnote{
$K^\times = K \setminus \{0\}$
}
as result the multiplication of all the elements should give us
$1$: $\alpha^{p^n-1} = 1$ or $\alpha^{p^n} - \alpha = 0$
(see theorem \ref{thm:abelianelement}).
Therefore $\alpha$ is a root of $Q_n$. Thus the splitting field of
$Q_n$ consists of elements of $K$.
The uniqueness
\footnote{
up to \mynameref{def:isomorphism}
}
of sub-extension of
$\mathbb{F}_p$ with $p^n$ elements is a result of uniqueness of
the splitting field (see theorem \ref{thm:lec2_1}).
\end{proof}
\label{thm:lec3_1}
\end{theorem}
\begin{theorem}
$\mathbb{F}_{p^d} \subset \mathbb{F}_{p^n}$ if and only if $d \mid n$.
\begin{proof}
Let $\mathbb{F}_{p^d} \subset \mathbb{F}_{p^n}$ in this case
$\mathbb{F}_p \subset \mathbb{F}_{p^d} \subset \mathbb{F}_{p^n}$
and
\[
\left[\mathbb{F}_{p^n}:\mathbb{F}_{p}\right] =
\left[\mathbb{F}_{p^n}:\mathbb{F}_{p^d}\right]
\left[\mathbb{F}_{p^d}:\mathbb{F}_{p}\right]
\]
or $n = x \cdot d$ i.e. $d \mid n$
Conversely if $d \mid n$ then $n = x \cdot d$ or
$p^n = \prod^x_{i=1} p^d$ thus if $x^{p^d} = x$ then
\[
x^{p^n} = x^{\prod^x_{i=1} p^d} =
\left(x^{p^d}\right)^{\prod^x_{i=2} p^d} = x^{\prod^x_{i=2} p^d} =
\dots = x^{p^d} = x,
\]
i.e. $\forall \alpha \in \mathbb{F}_{p^d}$ we also have
$\alpha \in \mathbb{F}_{p^n}$ or in other notation:
$\mathbb{F}_{p^d} \subset \mathbb{F}_{p^n}$.
\end{proof}
\label{thm:lec3_1_2}
\end{theorem}
\begin{theorem}
$\mathbb{F}_{p^n}$ is a \mynameref{def:stemfield} and a
\mynameref{def:splittingfield} of any \mynameref{def:irreducible}
$P \in \mathbb{F}_p$ of degree $n$.
\begin{proof}
\mynameref{def:stemfield} $K$ has to have degree $n$ over
$\mathbb{F}_p$ i.e.
$\left[K:\mathbb{F}_p\right] = n$ (see remark \ref{rem:lec2_1})
i.e. it should have $p^n$
elements (see remark \ref{rem:fpn})
and therefore $K=\mathbb{F}_{p^n}$
(see theorem \ref{thm:lec3_1}).
About \mynameref{def:splittingfield}. Using the just proved result
we can say that if $\alpha$ is a root of $P$
then $\alpha \in \mathbb{F}_{p^n}$ thus
$Q_n\left(\alpha\right) = 0$. Therefore $P$ divides $Q_n$
\footnote{as soon as any root of $P$ also a root of $Q_n$} and as
result $P$ splits in $\mathbb{F}_{p^n}$.
\end{proof}
\label{thm:lec3_1_3}
\end{theorem}
\begin{corollary}
Let $\mathcal{P}_d$ is the set of all irreducible,
\mynameref{def:monicpolynomial}s of degree $d$ such that
$\mathcal{P}_d \subset \mathbb{F}_p\left[X\right]$ then
\[
Q_n = \prod_{d \mid n} \prod_{P \in \mathcal{P}_d} P
\]
\begin{proof}
As we just seen if $P \in \mathcal{P}_d$ and $d \mid n$ then
$P \mid Q_n$.
\footnote{
Since stem field is $\mathbb{F}_{p^d} \subset \mathbb{F}_{p^n}$
(see theorem \ref{thm:lec3_1_2} and proof at the theorem
\ref{thm:lec3_1_3})
}
Since all such polynomials are relatively prime of course
\footnote{
As soon as $\mathbb{F}_p\left[X\right]$ is \mynameref{def:ufd}
then any polynomial can be written as a product of irreducible
elements, uniquely up to order and units this means that each
$P \in \mathcal{P}_d$ (where $d \mid n$) should be in the
factorization of $Q_n$. It should be only one time because there
is no multiply roots.
}
\footnote{
We also can say that 2 irreducible polynomial
$P_1, P_2 \in \mathbb{F}_p\left[X\right]$ should not have same
roots. For example if $\alpha$ is the same root - it cannot be
in $\mathbb{F}_p$ because in the case the polynomials will be
reducible. Thus it can be only in an extension of $\mathbb{F}_p$
from other side $gcd(P_1,P_2) = 1$ and therefore with
\mynameref{lem:bezout} one can get that $\exists Q,R \in
\mathbb{F}_p\left[X\right]$ such that
\(
P_1 Q + P_2 R = 1
\) and setting $\alpha$ into the equation leads to fail
statement that $0 = 1$.
}
and $Q_n$ have no multiple roots (as result no multiple factors)
then
\[
\left(\prod_{d \mid n} \prod_{P \in \mathcal{P}_d} P \right)\mid Q_n
\]
From other side let $R$ is an irreducible factor of $Q_n$.
$\alpha$ is a root of $R$ then $Q_n\left(\alpha\right) = 0$ thus
$\mathbb{F}_p\left(\alpha\right) \subset \mathbb{F}_{p^n}$.
From remark \ref{rem:lec2_1} we have
\[
\left[\mathbb{F}_p\left(\alpha\right) : \mathbb{F}_p\right] = \deg
R = d.
\]
From remark \ref{rem:fpn}
$\mathbb{F}_p\left(\alpha\right) = \mathbb{F}_{p^d}$.
Theorem \ref{thm:lec3_1_2} says that $d \mid n$.
As result $R \in \mathcal{P}_d$. Thus the
polynomial should be in the product
$\prod_{d \mid n} \prod_{P \in \mathcal{P}_d} P$.
\end{proof}
\end{corollary}
\begin{example}
Let $p = n = 2$. The monic irreducible polynomials in $\mathbb{F}_2$
whose degree divides $2$ are: $X$, $X+1$ and $X^2 +X + 1$.
As you can see
\begin{equation}
X\left(X+1\right)\left(X^2+X+1\right) = X^4 + X = X^4 - X
\nonumber
\end{equation}
because $2x = 0 \mod 2$ or $x = -x$.
\label{ex:lec3_ex1}
\end{example}
Just another example \cite{bib:KeithConradFiniteFields}:
\begin{myexample}[Polynomial factorization over a finite field]
\label{ex:lec3_polfactorization}
In $\mathbb{F}_2\left[X\right]$, the irreducible factorization of
$X^{2^n} -X$ for $n=1,2,3,4$ is as follows
\begin{eqnarray}
X^2 -X = X \left(X-1\right),
\nonumber \\
X^4 -X = X \left(X-1\right)\left(X^2 + X + 1\right),
\nonumber \\
X^8 -X = X \left(X-1\right)\left(X^3 + X + 1\right)
\left(X^3 + X^2 + 1\right),
\nonumber \\
X^{16} -X = X \left(X-1\right)\left(X^2 + X + 1\right)
\nonumber \\
\left(X^4 + X + 1\right)\left(X^4 + X^3 + 1\right)
\left(X^4 + X^3 + X^2 + X + 1\right).
\nonumber
\end{eqnarray}
You can compare the example with example \ref{ex:lec3_ex1} but you
have to take into consideration the following fact
$1 = -1 \mod 2$
\end{myexample}
\begin{gapexample}[Polynomial factorization over a finite field in GAP]
At the moment GAP provides only methods to factorize polynomials
over finite fields, over subfields of cyclotomic
fields, and over algebraic extensions of these \cite{bib:gap}.
There is an example of such factorization in
$\mathbb{F}_2\left[X\right]$ similar to \autoref{ex:lec3_polfactorization}
\begin{verbatim}
gap> x:=Indeterminate(GF(2),"x");;
gap> Factors(x^8-x);
[ x, x+Z(2)^0, x^3+x+Z(2)^0, x^3+x^2+Z(2)^0 ]
gap> x:=Indeterminate(GF(2),"x");;
gap> Factors(x^2-x);
[ x, x+Z(2)^0 ]
gap> Factors(x^4-x);
[ x, x+Z(2)^0, x^2+x+Z(2)^0 ]
gap> Factors(x^8-x);
[ x, x+Z(2)^0, x^3+x+Z(2)^0, x^3+x^2+Z(2)^0 ]
gap> Factors(x^16-x);
[ x, x+Z(2)^0, x^2+x+Z(2)^0, x^4+x+Z(2)^0, x^4+x^3+Z(2)^0,
x^4+x^3+x^2+x+Z(2)^0 ]
gap>
\end{verbatim}
\end{gapexample}
\section{Multiplicative group and automorphism group of a finite
field}
\begin{theorem}
Let $K$ be a field and and $G$ be a finite \mynameref{def:subgroup} of
$K^\times$ (see definition \ref{def:multiplicativegroup}) then $G$
is a \mynameref{def:cyclicgroup}
\footnote{
Not every finite group is cyclic. For instance the non-abelian
group $S_3$ (see example \ref{ex:s3group}) consists of 6 elements
but it is not cyclic.
If we want to have a cyclic group it should be
\mynameref{def:abeliangroup} in the case it can be represented in
the form of a cyclic group or a direct sum of cyclic groups
accordingly \mynameref{thm:fgagroup}. Another important requirement
is that the orders of the cyclic group have to be coprime.
For example there are 2 groups of order 4:
the cyclic one - $\mathbb{Z}/4\mathbb{Z}$ and $V_4$ -
\mynameref{def:v4}
$V_4 = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ is
non-cyclic because the orders are not coprime: $gcd(2,2) = 2 \ne
1.$
(From the staff) But a product of two
cyclic groups is
again cyclic, if their orders are coprime. For example, consider
the element $\left(1,1\right) \in \mathbb{Z}/2\mathbb{Z} \times
\mathbb{Z}/3\mathbb{Z}$. It's order is 6, so it generates the
whole group. Thus as it's mentioned
$\mathbb{Z}/N\mathbb{Z}$ is a cyclic group.
}
\begin{proof}
Idea is to compare $G$ and the \mynameref{def:cyclicgroup}
$\mathbb{Z}/N\mathbb{Z}$ where $N = \left|G\right|$.
\footnote{
We also will use the fact that any cyclic group of order $N$ is
isomorphic to $\mathbb{Z}/N\mathbb{Z}$
}
Let $\psi\left(d\right)$ - is the number of elements of order $d$
( see also \mynameref{def:grouporder}) in $G$. We need
$\psi\left(N\right) \ne 0$
\footnote{
In this case we will have at least one element $x$ of order $N$
i.e. $N$ different elements of $G$ is generated by the $x$
i.e. the $G$ is cyclic.
}
and we know that
$N = \sum \psi\left(d\right)$.
Let also $\phi\left(d\right)$ - is the number of elements of order $d$
( see also \mynameref{def:grouporder}) in $\mathbb{Z}/N\mathbb{Z}$.
\footnote{
The function $\phi\left(d\right)$ is also called as
\mynameref{def:eulerfuction}
and it
counts the positive integers up to a given integer $d$ that are
relatively prime to $d$
}
As $\mathbb{Z}/N\mathbb{Z}$ contains a single (cyclic) subgroup of
order $d$ for each $d \mid N$.
\footnote{
The one generated by $N/d$. Let $N = r \cdot d$ in the case
$x^N = 1$ there $x$ is a $\mathbb{Z}/N\mathbb{Z}$ group
generator. From other side
\[
x^N = x^{r \cdot d} = \prod_{i=1}^r x^d
\]
thus $x^d = 1$ i.e. there is a cyclic subgroup of order $d$.
}
$\phi\left(d\right)$ is the number of generators of
$\mathbb{Z}/d\mathbb{Z}$ i.e. the number of elements between $1$
and $d-1$ that are prime to $d$. We know that
$\phi\left(N\right) \ne 0$.
We claim that either $\psi\left(d\right) = 0$ or
$\psi\left(d\right) = \phi\left(d\right)$
\footnote{
suffices since $\sum \psi\left(d\right) = \sum
\phi\left(d\right) = N$
}
If no element of order $d$ in $G$ then $\psi\left(d\right) = 0$
otherwise if $x \in G$ has order $d$ then $x^d = 1$ or $x$ is a
root of the following polynomial $x^d - 1$. The roots of the
polynomial forms a cyclic subgroup of $G$ (by
\mynameref{def:cyclicgroup} definition).
So $G$ as well as
$\mathbb{Z}/N\mathbb{Z}$ has a single cyclic subgroup of order
$d$ (which is cyclic) or no such group at all.
\footnote{
Several comments about the subgroup. There is a group
because multiplication of any elements is in the set. It's
cyclic because it's generated by one element.
All $x^i$ where $i \le d$ are different (in other case the group
should have an order less than $d$). Each element of the group
$x^i$ is a root of $x^d - 1$ because $(x^i)^d = (x^d)^i = 1^i =
1$. And the group is unique as well as we have $d$ different
roots of $x^d-1$ in the group.
}
If $\psi\left(d\right) \ne 0$ then exists such a subgroup and
$\psi\left(d\right)$ is equal to the number of generators of that
group or $\phi\left(d\right)$
\footnote{
Because the group is cyclic and any cyclic group is isomorphic
to $\mathbb{Z}/d\mathbb{Z}$ and as result has the same number of
generators.
}
In particular $\psi\left(d\right) \le \phi\left(d\right)$
\footnote{
because $\psi\left(d\right) = 0$ or
$\psi\left(d\right) = \phi\left(d\right)$
}
but there should be equality because the sum of both $\sum
\psi\left(d\right) = \sum \phi\left(d\right) = N$.
In particular $\psi\left(N\right) \ne 0$ and we proved the
theorem.
\end{proof}
\label{thm:lec3_2}
\end{theorem}
\begin{corollary}
If $\mathbb{F}_p \subset K$ and
$\left[K:\mathbb{F}_p\right] = n$ then $\exists \alpha$ such that
$K = \mathbb{F}_p\left(\alpha\right)$. In particular $\exists$ an
\mynameref{def:irreducible} of degree $n$ over $\mathbb{F}_p$
\footnote{
The theorem \ref{thm:lec3_1_3} and remark \ref{rem:fpn} says that
the stem field for any
polynomial of degree $n$ over $\mathbb{F}_p$ exists and there is
$\mathbb{F}_{p^n}$ and
$\left[\mathbb{F}_{p^n}:\mathbb{F}_{p}\right] = n$ i.e.
$K = \mathbb{F}_{p^n}$.
But we had not proved yet that an
irreducible polynomial of degree $n$ exists.
}
\begin{proof}
We can take $\alpha = \mbox{ generator of } K^\times$
\footnote{
This is because from theorem \ref{thm:lec3_2}
$K^\times = \left<\alpha\right>$ i.e. any element of $K$ except $0$
can be got as a power of $\alpha$. Moreover $\alpha \notin
\mathbb{F}_p$ (in other case we will got $K = \mathbb{F}_p$)
i.e. we really got
$K = \mathbb{F}_p\left(\alpha\right)$.
$\alpha$ is an \mynameref{def:algebraicelement} because we can
consider
$1, \alpha, \dots, \alpha^{n-1}$
as a basis and $\alpha^n$ can be represented via
the basis. I.e. $\exists P \in \mathbb{F}_p\left[X\right]$ such
that $P\left(\alpha\right) = 0$.
By lemma \ref{lem:minpolynomial}
there exists an irreducible polynomial
$P_{min}\left(\alpha, \mathbb{F}_p\right)$.
}
\end{proof}
\label{cor:lec3_1}
\end{corollary}
\begin{corollary}
The group of automorphism of $\mathbb{F}_{p^n}$ over
$\mathbb{F}_{p}$ is cyclic and generated by Frobenius map:
$F_p: x \to x^p$
(see remark \ref{rem:frobeniushomomorphism} where we showed that the
Frobenius map is a field automorphism)
\label{cor:lec3_2}
\begin{proof}
As we know from theorem \ref{thm:lec3_1}:
$\forall x \in \mathbb{F}_{p^n}: x^{p^n} = x$ so
\footnote{
because
\[
\left(F_p\right)^n\left(x\right) =
\left(F_p\right)^{n-1}\left(F_p\left(x\right)\right) =
\left(F_p\right)^{n-1}\left(x^p\right) = \dots = x^{p^n} = x
\]
}
$F_p^n = id$. As result the order of $\left<F_p\right>$ is no
greater than $n$. Lets prove that the $ord F_p = n$.
Really if $m < n$ then
$x^{p^m} - x =0$ has $p^m < p^n$ roots and
\footnote{
because operates only with $p^m$ elements i.e. not of all
elements of $\mathbb{F}_{p^n}$.
}
$F_p^m$ cannot be identity.
Finally (from corollary \ref{cor:lec3_1} ) we have
$\mathbb{F}_{p^n} = \mathbb{F}_p\left(\alpha\right)$ where
$\alpha$ is a root of an irreducible polynomial of degree
$n$. I.e. there cannot be more than $n$ automorphism
\footnote{
Each automorphism converts the root $\alpha$ into another one
of $n$ roots of the irreducible polynomial
}
so
\[
\left|
Aut\left(
\mathbb{F}_{p^n}/\mathbb{F}_{p}
\right)
\right| \le n
\]
and as we have $n$ of them (\mynameref{def:automorphism}s)
\footnote{
We have $n$ different elements of cyclic group
$\left<F_p\right>$. The generator of the group is an
automorphism and as result each of $n$ elements is also an
automorphism.
}
then
\[
\left|
Aut\left(
\mathbb{F}_{p^n}/\mathbb{F}_{p}
\right)
\right| = n
\]
and the group is cyclic generated by $F_p$.
\end{proof}
\end{corollary}
\section{Separable elements}
\label{sec:lec3_separable_elements}
Let $E$ is a \mynameref{def:splittingfield} of an irreducible polynomial
$P$. We would like to say that it ``has many
\mynameref{def:automorphism}s''. What does this mean? This means the
following thing:
Let $\alpha$ and $\beta$ be 2 roots of $P$ then we have 2 extensions
$K\left(\alpha\right) \subset E$ and
$K\left(\beta\right) \subset E$.
There exists an \mynameref{def:isomorphism} (see proposition
\ref{prop:stemfield}) over $K$
\[
\phi: K\left(\alpha\right) \to K\left(\beta\right)
\]
that is also extended to an \mynameref{def:automorphism} on $E$
(see theorem \ref{thm:isomorphismextension}).
There is one problem with it: is that truth that an irreducible
polynomial of degree $n$ has ``many'' i.e. exactly $n$ ( it cannot
have more than $n$) roots.
The answer is yes if $char K = 0$, but not always if $char K = p$
(where $p$ is a prime number). $P$ can have multiple roots in the case
i.e. $gcd(P, P') \ne 1$.
Why it's not a case for $char K = 0$ - it is because
$\deg P' < \deg P$ and $P \nmid P'$ for $P' \ne 0$ (non constant
polynomial)
\footnote{
Let $P$ has multiply roots. As soon as it's irreducible a multiply
root is in an extension of $K$. In this case the root should be also
a root for $P'$ thus by lemma \ref{lem:minpolynomial} (or
theorem \ref{thm:irreduciblediv}) one can get
that $P \mid P'$ in $K\left[X\right]$ but that is impossible because
$\deg P' < \deg P$ and can be only possible if $P' = 0$.
}
But for $char K = p$ there can be a case when $P' = 0$ for a non
constant polynomial thus $P \mid P'$ and as result $gcd(P, P') = P$.
The $P' = 0$ i.e. it vanishes $P$ is a polynomial in $X^p$. I.e. if
$P = \sum a_i x^i$ and $p \mid i$ or $a_i = 0$. In that case ($P' =
0$) let $r = \max h$ such that $P$ is a polynomial in $X^{p^h}$ that
is $a_i = 0$ whenever $p^h \nmid i$. See the following example
\begin{myexample}
Let $p = 2$. The polynomial $P\left(X\right) = X^{16} + 1$ has the
required property ($P' = 0$). The polynomial can be present in the
following form
\[
P\left(X\right) = X^{2^4} + 1 = Q(Y)
\]
where $Y = X^{16}$ and $Q(Y) = Y + 1$. In the case
$r=4, p^r = 16 \mid 16$
For polynomial $P\left(X\right) = X^{12} + 1$ we have
\[
P\left(X\right) = \left(X^{2^2}\right)^3 + 1 = Q(Y)
\]
where $Y = X^4$ and $Q(Y) = Y^3 + 1$. In the case
$r=2, p^2 = 4 \mid 12$ because $h = 3 > 2$ does not fit into
the requirements: $p^h = 2^3 = 8 \nmid 12$.
\end{myexample}
\begin{proposition}
Let $P\left(X\right) = Q\left(X^{p^r}\right)$ and $Q' \ne 0$ i.e.
$gcd(Q, Q') = 1$ then $Q$ does not have multiple roots but
all roots of $P$ have multiplicity $p^r$.
\begin{proof}
If $\lambda$ is a root of $P$ then $\lambda$:
$P(X) = (X - \lambda)R$
Thus $\mu = \lambda^{p^r}$ is the root of $Q$
\footnote{
$Q\left(\mu\right) = Q\left(\lambda^{p^r}\right) =
P\left(\lambda\right) = 0$
}
as result
$Q(Y) = (Y - \lambda^{p^r}) S(Y)$ therefore
\[
P(X) =
\left(X^{p^r} - \lambda^{p^r}\right)S\left(X^{p^r}\right) =
\left(X - \lambda\right)^{p^r}S\left(X^{p^r}\right)
\]
and $\lambda$ is not a root of $S\left(X^{p^r}\right)$.
\footnote{
This is because $Q$ does not have multiply roots and as result
$\mu = \lambda^{p^r}$ is not a root of $S$ or in other words
$S\left(X^{p^r}\right)_{X=\lambda} \ne 0$
}
Thus we just got that multiplicity of $\lambda$ is $p^r$.
\end{proof}
\label{prop:lect3_1}
\end{proposition}
\begin{definition}[Separable polynomial]
$P\in K\left[X\right]$ irreducible polynomial is called separable if
$\gcd\left(P, P'\right) = 1$
\label{def:separablepolynomial}
\end{definition}
\begin{definition}[Degree of separability]
$d_{sep}(P) = \deg Q$ (as above)
\footnote{
It requires some explanation compare to that one was got on the
lecture video.
If $P$ is a \mynameref{def:separablepolynomial} then
$d_{sep}(P) = \deg P$. In other case $P$ should be represented as
$P\left(X\right) = q_1(X^p)$. If $q_1\left(Y\right)$ is separable
than $Q = q_1$ otherwise we continue and represent
$q_1\left(X\right) = q_2\left(X^p\right)$. We should stop on some
$q_r$ for which we will have $Q = q_r$ and $P\left(X\right) =
Q\left(X^{p^r}\right)$. In the case $d_{sep}(P) = \deg Q$.
}
\label{def:degsep}
\end{definition}
\begin{definition}[Degree of inseparability]
$d_{i}(P) = \frac{\deg P}{\deg Q}$ ( $=p^r$ in proposition
\ref{prop:lect3_1})
\label{def:deginsep}
\end{definition}
\begin{definition}[Pure inseparable polynomial]
$P$ is pure inseparable if $d_i = \deg P$.
Then $P = X^{p^r} - a$
\footnote{
In the case $\deg Q = 1$ i.e. $Q\left(Y\right) = Y- a$ or
$P = X^{p^r} - a$.
}
\label{def:deginseppol}
\end{definition}
\begin{definition}[Separable element]
Let $L$ be an \mynameref{def:algebraicextension} of $K$ then $\alpha \in L$ is
called separable(inseparable) if it's
\mynameref{def:minpolynomial} $P_{min}\left(\alpha, K\right)$ has
the property.
Note: the separable element is also \mynameref{def:algebraicelement}
because it has minimal polynomial.
\label{def:degsepelem}
\end{definition}
\begin{proposition}[On number of homomorphisms]
If $\alpha$ is separable on $K$ then the number of
\mynameref{def:homomorphism}s over $K$ from $K$ to $\bar{K}$
\[
\left|Hom_K\left(K\left(\alpha\right), \bar{K}\right)\right| =
\deg P_{min}\left(\alpha, K\right)
\]
in general
\[
\left|Hom_K\left(K\left(\alpha\right), \bar{K}\right)\right| =
d_{sep} P_{min}\left(\alpha, K\right)
\]
\begin{proof}
It's obvious because $d_{sep}$ is the number of distinct roots.
\end{proof}
\label{prop:lec3_2}
\end{proposition}
\section{Separable degree, separable extensions}
We want to generalize the proposition \ref{prop:lec3_2} for any field
extension (not necessary $K\left(\alpha\right)$).
Let $L$ be a finite extension of $K$
\begin{definition}[Separable degree]
$\left[L:K\right]_{sep} = \left|Hom_K\left(L, \bar{K}\right)\right|$
\label{def:separabledegree}
\end{definition}
As we know if $L = K\left(\alpha\right)$ then
\mynameref{def:separabledegree} is a number of distinct roots of
minimal polynomial $P_{min}\left(\alpha, K\right)$
\begin{definition}[Separable extension]
$L$ is separable over $K$ if
$\left[L:K\right]_{sep} = \left[L:K\right]$
\label{def:separableextension}
\end{definition}
\begin{definition}[Inseparable degree]
\[
\left[L:K\right]_i =
\frac{\left[L:K\right]}{\left[L:K\right]_{sep}}
\]
\label{def:inseparabledegree}
\end{definition}
\begin{theorem}[About separable extensions]
\begin{enumerate}
\item If $K \subset L \subset M$ then
$\left[M:K\right]_{sep} = \left[M:L\right]_{sep}
\left[L:K\right]_{sep}$
and $M$ is \mynameref{def:separableextension} over $K$ if and only
if $M$ is separable over $L$ and $L$ is separable over $K$
\item The following things are equivalent
\begin{enumerate}
\item $L$ is separable over $K$ \label{thm:lec3_3:itm:1}
\item $\forall \alpha \in L$ $\alpha$ \mynameref{def:degsepelem}
over $K$ \label{thm:lec3_3:itm:2}
\item $L$ is generated over $K$ by a finite number of
\mynameref{def:degsepelem}s i.e.
$L = K\left(\alpha_1, \alpha_2, \dots, \alpha_n\right)$, there
$\alpha_i$ is separable over $K$
\label{thm:lec3_3:itm:3}
\item $L = K\left(\alpha_1, \alpha_2, \dots, \alpha_n\right)$, there
$\alpha_i$ is separable over
$K\left(\alpha_1, \alpha_2, \dots, \alpha_{i-1}\right)$
\label{thm:lec3_3:itm:4}
\end{enumerate}
\end{enumerate}
\begin{remark}
That holds if we replace separability with pure inseparability.
\end{remark}
\label{thm:lec3_3}
\begin{proof}
About 1st part:
If we have a \mynameref{def:homomorphism} $\phi: L \to \bar{K}$ then
it is extended to $\tilde{\phi}: M \to \bar{K}$ (by extension
theorem \ref{thm:lec2_3}) it can be done with one way per each
homomorphism from $L$ to $M$ i.e. it can be done by
$\left|Hom_L\left(M, \bar{K}\right)\right|$ ways but we have
\[
\left|Hom_L\left(M, \bar{K}\right)\right| =
\left|Hom_L\left(M, \bar{L}\right)\right| = \left[M:L\right]_{sep}
\]
because $\bar{K}$ is also
$\bar{L}$ (\mynameref{def:algebraicclosure} over $L$) thus for the
total number of homomorphisms one can get the following
equations
\begin{eqnarray}
\left[M:K\right]_{sep} =
\left|Hom_K\left(M, \bar{K}\right)\right| =
\left|Hom_K\left(L, \bar{K}\right)\right|
\left|Hom_L\left(M, \bar{K}\right)\right| =
\nonumber \\
\left|Hom_K\left(L, \bar{K}\right)\right|
\left|Hom_L\left(M, \bar{L}\right)\right| =
\left[M:L\right]_{sep} \left[L:K\right]_{sep}
\nonumber
\end{eqnarray}
We have the following inequality
\footnote{
The inequality can be proved by induction using the fact that
it's true for $K\left(\alpha\right)$ because from general case
of proposition \ref{prop:lec3_2}
\[
\left|Hom_K\left(K\left(\alpha\right), \bar{K}\right)\right| =
d_{sep} P_{min}\left(\alpha, K\right) \le
\deg P_{min}\left(\alpha, K\right) =
\left[K\left(\alpha\right): K \right]
\]
Then let it was proved for $E = K\left(\alpha_1, \dots,
\alpha_{n-1}\right)$ and we want to prove it for
$K\left(\alpha_1, \dots,
\alpha_{n-1}, \alpha_n\right) = E\left(\alpha_n\right)$.
It's easy because $\bar{E} = \bar{K}$ and we can use the same
approach as for the first induction step.
}
\begin{equation}
\left[E:K\right]_{sep} \le \left[E:K\right].
\label{eq:sepineq}
\end{equation}
With the inequality (\ref{eq:sepineq}) we also have
\begin{eqnarray}
\left[M:K\right]_{sep} =
\left[M:L\right]_{sep} \left[L:K\right]_{sep} \le
\left[M:L\right] \left[L:K\right] = \left[M:K\right]
\nonumber
\end{eqnarray}
The equality is possible if
$\left[M:L\right]_{sep} = \left[M:L\right]$ and
$\left[L:K\right]_{sep} = \left[L:K\right]$ i.e. if
$M$ is separable over $L$ and $L$ is
separable over $K$.
This finishes the proof of the first part.
About 2d part:
\ref{thm:lec3_3:itm:1} $\Rightarrow$ \ref{thm:lec3_3:itm:2}:
Part 1 implies that a separable sub extension
$K\left(\alpha\right)$ or a separable extension $L$ is separable.
\footnote{
I.e. in the case we have $K \subset K\left(\alpha\right) \subset
L$ and if $L$ is separable then $K\left(\alpha\right)$ is
separable and as result $\alpha$ is a
\mynameref{def:degsepelem} because $P_{min}\left(\alpha, K\right)$
is separable.
}
\ref{thm:lec3_3:itm:2} $\Rightarrow$ \ref{thm:lec3_3:itm:3}:
obvious
\footnote{
We consider finite extensions (see remark \ref{rem:fpn})
i.e. which consists of finite number of elements
}
\ref{thm:lec3_3:itm:3} $\Rightarrow$ \ref{thm:lec3_3:itm:4}:
We know that
$P_{min}\left(\alpha_i, K\left(\alpha_1, \dots,
\alpha_{i-1}\right)\right)$ divides
$P_{min}\left(\alpha_i, K\right)$.
\footnote{
Let $K\left(\alpha_1, \dots, \alpha_{i-1}\right) = L$
then $K \subset L$ and
$P_{min}\left(\alpha_i, K\right) \in L\left[ X \right]$
From other side $P_{min}\left(\alpha_i, L\right)$ is the minimal
irreducible polynomial in $L\left[X\right]$ and any other
polynomial with $\alpha_i$ as root has to by divisible by it
(see also lemma \ref{lem:minpolynomial}).
}
Thus if
$P_{min}\left(\alpha_i, K\right)$ is separable (i.e. have distinct
roots) then it's divisor $P_{min}\left(\alpha_i, K\left(\alpha_1, \dots,
\alpha_{i-1}\right)\right)$ also should have distinct roots i.e.
$\alpha_i$ is a \mynameref{def:degsepelem} over
$K\left(\alpha_1, \dots,\alpha_{i-1}\right)$
\ref{thm:lec3_3:itm:4} $\Rightarrow$ \ref{thm:lec3_3:itm:1}:
Induction as above
\footnote{
The first induction step is trivial: $L=K\left(\alpha\right)$
where $\alpha$ is separable over $K$ in this case
$K\left(\alpha\right)$ is also separable.
Now we have that $\forall k < n$:
if $L = K\left(\alpha_1, \alpha_2, \dots, \alpha_k\right)$, there
$\alpha_i$ is separable over
$K\left(\alpha_1, \alpha_2, \dots, \alpha_{i-1}\right)$ then $L$
is separable over $K$. Thus we have
$K\left(\alpha_1, \alpha_2, \dots, \alpha_{n-1}\right)$
separable and $\alpha_n$ is separable over $K\left(\alpha_1,
\alpha_2, \dots, \alpha_{n-1}\right)$ thus using the first part
of the theorem we can conclude that
$K\left(\alpha_1, \alpha_2, \dots, \alpha_{n}\right)$ is also
separable over $K$
}
\end{proof}
\end{theorem}
What's about not finite extension? For that case we can define
separable extension as follows.
\begin{definition}[Separable closure]
If $L$ over $K$ not necessary finite (but algebraic over $K$) we can
define
\[
L^{sep} = \left\{x \vert x \mbox{ separable over } K \right\}
\]
$L^{sep}$ is a sub extension
\footnote{
$K \subset L^{sep} \subset L$
}
called separable closure of $K$ over
$L$
\label{def:separableclosure}
\end{definition}
$L$ is pure inseparable over $L^{sep}$.
\begin{remark}
\begin{enumerate}
\item If $char K = 0$ then any extension of $K$ is separable
\item If $char K = p$ then pure inseparable extension has degree
$p^r$ and always degree of inseparability
$\left[L:K\right]_i = p^r$
\end{enumerate}
\end{remark}
\section{Perfect fields}