-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlecture2.tex
665 lines (607 loc) · 25.1 KB
/
lecture2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
%% -*- coding:utf-8 -*-
\chapter{Stem field, splitting field, algebraic closure}
We introduce the notion of a stem field and a splitting field (of a
polynomial). Using Zorn's lemma, we construct the algebraic closure of
a field and deduce its unicity (up to an isomorphism) from the theorem
on extension of homomorphisms.
\section{Stem field. Some irreducibility criteria}
\subsection{Stem field}
\begin{definition}[Stem field]
Let $P \in K\left[X\right]$ is an irreducible
\mynameref{def:monicpolynomial}. \mynameref{def:fextension1} $E$ is a stem
field of $P$ if $\exists \alpha \in E$ - the root of polynomial
$P$ and $E = K\left[\alpha\right]$.
\footnote{
Comment from Marc Emmanuel: The stem field is more widely known as
simple extensions \cite{wiki:simpleextension}
}
\label{def:stemfield}
\end{definition}
Such things exist, for instance we can take
$K\left[X\right]/\left(P\right)$. It is a field because $P$ is
an \mynameref{def:irreducible} moreover the root of the $P$ is in the
field (see example
\ref{ex:F2overP}).
We also can say that for any stem field $E$:
\[
K\left[X\right]/\left(P\right) \cong E.
\]
We can use the following \mynameref{def:isomorphism}:
$f: \forall \mathcal{P} \in K\left[X\right]/\left(P\right) \rightarrow
\mathcal{P}(\alpha)$, there $\alpha$ is a root of polynomial $P$.
\footnote{
In the case we have $f(P) = P(\alpha) = 0$ as expected
}
To summarize we have the following
\begin{proposition}[About stem field existence]
The stem field exist and if we have 2 stem fields $E$ and $E'$ which
correspond 2 roots of $P$: $E = K\left[\alpha\right]$,
$E' = K\left[\alpha'\right]$ then $\exists! f: E \cong E'$
(\mynameref{def:isomorphism} of K-algebras) such that $f(\alpha) =
\alpha'$.
\begin{proof}
Existence: $K\left[X\right]/\left(P\right)$ can be took as the
stem field.
Uniquest of the \mynameref{def:isomorphism} is easy because it is
defined by it's value on argument $\alpha$:
\footnote{
\label{note:stemfieldisomorphismunique}
First of all if we have an isomorphism $f$ between two $K$
algebras $K\left[\alpha \right]$ and $K\left[\alpha'
\right]$ it should preserve the $K$-algebra structure,
especially $\forall k \in K: k 1_{K\left[\alpha \right]} \to_f
k 1_{K\left[\alpha' \right]}$. As soon as \(k \in K\left[
\alpha \right]\) we can write the following
\[
f\left(k
1_{K\left[\alpha \right]}\right) = f\left(k\right)
f\left(1_{K\left[\alpha \right]}\right) = f\left(k\right)
1_{K\left[\alpha' \right]}.
\]
But from other side
\[
f\left(k
1_{K\left[\alpha \right]}\right) = k f\left(1_{K\left[\alpha
\right]}\right) = k 1_{K\left[\alpha' \right]}
\]
i.e. \(\forall k \in K: f = id\).
$\alpha$ forms a basis such that $\forall \beta \in E =
K\left[\alpha\right]$ we have $\beta = \sum_i k_i \alpha^i$
where $k_i \in K$. We also have $f\left( \beta \right) =
\sum_i k_i \left[f \left( \alpha\right)\right]^i = \sum_i k_i
\left[\alpha'\right]^i$. Thus if $\exists f'$ isomorphism such
that $f'\left(\alpha \right) = \alpha'$ then $f'\left( \beta
\right) = \sum_i k_i \left[\alpha'\right]^i =
f \left( \beta\right)$
i.e. the isomorphisms are the same.
}
\begin{eqnarray}
\phi: K\left[X\right]/\left(P\right) \cong_{x \to \alpha} E,
\nonumber \\
\psi: K\left[X\right]/\left(P\right) \cong_{x \to \alpha'} E',
\nonumber
\end{eqnarray}
thus
\[
\psi \circ \phi^{-1} : E \cong_{\alpha \to x \to \alpha'} E'.
\]
\end{proof}
\label{prop:stemfield}
\end{proposition}
\begin{remark}[About stem field]
\begin{enumerate}
\item In particular: If a stem field contains 2 roots of $P$ then
$\exists!$ \mynameref{def:automorphism} taking one root into
another.
\item If $E$ stem field then $\left[E:K\right] = \deg P$
\item If $\left[E:K\right] = deg P$ and $E$ contains a root of $P$
then $E$ is a stem field
\item If $E$ is not a stem field but contains root of $P$ then
$\left[E:K\right] > deg P$
\footnote{
Let $E'$ is a stem field of $P$. In the case we have
$E' \subset E$ as soon as any element of $E'$ is an element of
$E$ because $E$ contains a root of $P$.
From other side $E \ne E'$ as soon as $E$ is not a stem field.
Thus $\deg E > \deg E' = \deg P$.
}
\end{enumerate}
\label{rem:lec2_1}
\end{remark}
\subsection{Some irreducibility criteria}
\begin{corollary}
$P \in K\left[X\right]$ is irreducible over $K$ if and only if it
does not have a root in \mynameref{def:fextension1} $L$ of $K$ such that
$\left[L:K\right] \le \frac{n}{2}$, where $n = deg P$.
\label{cor:lec2_1}
\begin{proof}
$\Rightarrow$: If $P$ is not irreducible then it has a polynomial $Q$ that
divides $P$ and $deg Q \le \frac{n}{2}$.
\footnote{
$P = RQ$ and if
$deg Q > \frac{n}{2}$ then we can take $R$ as $Q$
}
The
\mynameref{def:stemfield} $L$ for $Q$ exists and it's degree is $deg Q
\le \frac{n}{2}$. $L$ should have a root of $Q$ (as soon as a root of
$P$) by definition.
$\Leftarrow$: If $P$ has a root $\alpha$ in $L$ then $\exists
P_{min}\left(\alpha, K\right)$ with degree
$\le \frac{n}{2} < n$
\footnote{
because
$\left[L:K\right] \le \frac{n}{2}$
(see remark
\ref{rem:lec2_1})
}
that divides $P$ (see lemma \ref{lem:minpolynomial}) i.e. $P$
become reducible.
\end{proof}
\end{corollary}
\begin{corollary}
$P \in K\left[X\right]$ irreducible with $\deg P = n$. Let $L$ be an
extension of $K$ such that $\left[L:K\right] = m$.
If $gcd\left(n,m\right) = 1$ then $P$ is irreducible over $L$.
\label{cor:lec2_2}
\begin{proof}
If it is not a case and $\exists Q$ such that $Q \mid P$ in
$L\left[X\right]$. Let $M$ be a \mynameref{def:stemfield} of $Q$
over $L$.
So we have $K \subset L \subset M = L\left(\alpha\right)$. $M$ is
a stem field of $Q$ therefore $\left[M:L\right] = \deg Q = d < n$. Thus
\[
\left[M:K\right] = \left[M:L\right] \left[L:K\right] =
m d
\]
Lets $K\left(\alpha\right)$ is a stem field of $P$ over $K$ then
$\left[K\left(\alpha\right):K\right] = \deg P = n$.
$K\left(\alpha\right) \subseteq M$ and therefore $n \mid md$
\footnote{
$K \subset K\left( \alpha \right) \subset M$ and with
\mynameref{thm:mulformuladegrees} we have
\[
md = \left[M : L \right] \left[L : K \right] =
\left[M : K \right] =
\left[M : K\left( \alpha \right) \right]
\left[K\left( \alpha \right) : K \right] =
\left[M : K\left( \alpha \right) \right] \cdot n
\]
}
thus
using $gcd(m,n)=1$ one can get that $n \mid d$ but this is
impossible because $d < n$.
\end{proof}
\end{corollary}
\section{Splitting field}
\begin{definition}[Splitting field]
Let $P \in K\left[X\right]$.
The splitting field of $P$ over $K$ is an extension $L$ where $P$ is
split (i.e. is a product of linear factors) and roots of $P$
generate $L$
\label{def:splittingfield}
\end{definition}
\begin{theorem}[About splitting fields]
\begin{enumerate}
\item Splitting field $L$ exists and $\left[L:K\right] \le d!$,
where $d = deg P$.
\item If $L$ and $M$ are 2 splitting fields then
$\exists \phi: L \cong M$ (an \mynameref{def:isomorphism}). But
the \mynameref{def:isomorphism} is not necessary to be unique.
\end{enumerate}
\label{thm:lec2_1}
\begin{proof}
Lets prove by induction on $d$. The first case ($d = 1$) is
trivial the $K$ itself is the splitting field. Now assume $d > 1$
and that the theorem is valid for any polynomial of degree $< d$
over any field $K$. Let $Q$ be any irreducible factor of $P$. We
can create a \mynameref{def:stemfield} $L_1 = K\left(\alpha\right)$
for $Q$ that will be also a \mynameref{def:stemfield} for $P$.
Over $L_1$ we have $P = (x - \alpha) R$, where $R$ is a polynomial
with $deg R = d - 1$. We know (by induction) that
there exists a \mynameref{def:splittingfield} $L$ for $R$ over $L_1$
and its degree:
\(
\left[L:L_1\right] \le (d-1)!
\)
We have $K \subset L_1 \subset L$. The $L$ will be a splitting
field for original polynomial $P$. Its degree (by
\mynameref{thm:mulformuladegrees}) is $ \le d \cdot (d-1)! = d!$.
Uniqueness: Let $L$ and $M$ are 2 splitting fields. Let $\beta$ is
a root of $Q$ (irreducible factor of $P$) in $M$.
We have 2 stem fields: $L_1 = K\left(\alpha\right)$ and
$M_1 = K\left(\beta\right)$. Proposition \ref{prop:stemfield} says
as that
\[
L_1 = K\left(\alpha\right) \cong
K\left(\beta\right) = M_1,
\]
i.e. $\exists \phi$ - isomorphism such that $\phi(\alpha) = \beta$.
Over $M_1$ we have $P = (x - \beta) S$, where
$S = \phi\left(R\right)$.
\footnote{
We have $\phi: K\left(\alpha\right) \to
K\left(\beta\right)$. Note \ref{note:stemfieldisomorphismunique}
states that $\phi\mid_K = id$, where $\phi\mid_K$ is the $\phi$
restricted to $K$: $\phi\mid_K : K \to K$.
Therefore
$\phi\left(P\right) = P$ because $P \in K\left[X\right]$.
Thus
\[
P = (X - \beta) S = \phi\left(P\right) =
\phi\left((X - \alpha) R\right) =
(X - \beta) \phi\left(R\right)
\]
and $S = \phi\left(R\right)$.
}
$M$ is a splitting field for $S$ over $K\left[\beta\right]$
i.e. it is a $K\left[\beta\right]$-algebra but it's is also
a $K\left[\alpha\right]$-algebra
\footnote{
via
the existent \mynameref{def:isomorphism}
between $K\left[\alpha\right]$ and $K\left[\beta\right]$
}
and as
result it's a splitting field for $R$ over $K\left[\alpha\right]$
and by induction
\footnote{
Induction steps are the following: we have a polynomial $P$ with
$\deg P = n$. For $n=1$ the isomorphism exists by proposition
\ref{prop:stemfield}.
We suppose that the isomorphism is proved for
polynomial with degree $n-1$.
}
we have $K\left[\alpha\right]$ isomorphism $L \cong M$ and as
result $K$ isomorphism $L \cong M$.
\footnote{
Lukas Heger comment about the prove:
We can consider
another roots: $\alpha_2$ for $R$ and $\beta_2$ for $S$
and there is an isomorphism between the 2 stem fields
also. Continue in the way we will get the 2 following chains
\begin{eqnarray}
K \subset L_1 \subset L_2 \subset \dots \subset L_n \subset L
\nonumber \\
K \subset M_1 \subset M_2 \subset \dots \subset M_n \subset M
\nonumber
\end{eqnarray}
On each step we have an isomorphism between $L_i$ and $M_i$ and as
result the isomorphism between resulting fields $L$ and $M$ (via
$\phi$) as $L_n$ algebras and therefore as $K$ algebras.
}
%% $M$ is splitting field for $S$ over
%% $K\left(\beta\right) = M_1$. $M$ is also $L_1$-algebra (via the
%% \mynameref{def:isomorphism} $\phi$) and as such it's a splitting
%% field for $R$ over $L_1$. As soon as
%% $\left[L:L_1\right] = \left[M:M_1\right]$ the $M/L_1 \cong L/L_1$
%% because the $L_1$-algebras with the same dimension are isomorphic (see lemma
%% \ref{lem:vsisomorphism}). Therefore we have an
%% $L_1 = K\left(\alpha\right)$ \mynameref{def:isomorphism} $L \cong M$
%% and therefore $K$ \mynameref{def:isomorphism} $L \cong M$.
\end{proof}
\end{theorem}
\begin{remark}
The \mynameref{def:isomorphism} considered in theorem \ref{thm:lec2_1}
is not unique. A splitting field can
have many \mynameref{def:automorphism} and this is in fact the subject
of Galois theory.
\end{remark}
\section{An example. Algebraic closure}
\subsection{An example of automorphism}
\begin{example}[$X^3-2$ over $\mathbb{Q}$]
Let we have the following polynomial $X^3-2$ over $\mathbb{Q}$
(see also example \ref{ex:lec6_degree3}).
It
has the following roots: $\sqrt[3]{2}, j\sqrt[3]{2}$ and
$j^2\sqrt[3]{2}$, where $j = e^{\frac{2 \pi i}{3}}$. Splitting field
is the following $L = \mathbb{Q}\left(\sqrt[3]{2}, j\right)$. Lets
find \mynameref{def:automorphism}s of the field.
$P_{min}\left(j, \mathbb{Q}\right) = X^2 + X + 1$ thus using remark
\ref{rem:lec2_1}
$\left[\mathbb{Q}\left(j\right) : \mathbb{Q}\right] = 2$.
Using the same arguments one can get that
$\left[\mathbb{Q}\left(\sqrt[3]{2}\right) : \mathbb{Q}\right] = 3$.
As result the following picture can be got
\begin{tikzpicture}[descr/.style={fill=white,inner sep=2.5pt}]
\matrix (m) [matrix of math nodes, row sep=3em,
column sep=3em]
{ & \mathbb{Q}\left(j\right) & \\
\mathbb{Q} & & \mathbb{Q}\left(\sqrt[3]{2}, j\right) = L\\
& \mathbb{Q}\left(\sqrt[3]{2}\right) & \\ };
\path[->,font=\scriptsize]
(m-2-1) edge node[descr] {$ 2 $} (m-1-2)
(m-1-2) edge node[descr] {$ 3 $} (m-2-3)
(m-2-1) edge node[descr] {$ 3 $} (m-3-2)
(m-3-2) edge node[descr] {$ 2 $} (m-2-3);
\end{tikzpicture}
As soon as $L$ is a stem field for $\mathbb{Q}\left(j\right)$
and for $\mathbb{Q}\left(\sqrt[3]{2}\right)$ then 2 types of
automorphism exist:
\begin{enumerate}
\item $\mathbb{Q}\left(\sqrt[3]{2}\right)$
\mynameref{def:automorphism}. We have
$X^2+X+1$ as
$P_{min}\left(j, \mathbb{Q}\left(\sqrt[3]{2}\right)\right)$. The
polynomial has 2 roots: $j$ and $j^2$ and there is an
\mynameref{def:automorphism} that exchanges the roots. Lets call it
$\tau$
\footnote{
\label{note:lec2_example_j}
$j \to j^2$ thus $j^2 \to j^4 = j$. Therefore $j
\leftrightarrow j^2$
}
\item $\mathbb{Q}\left(j\right)$ \mynameref{def:automorphism}. In
this case the automorphism of exchanging $\sqrt[3]{2}$ and
$j \sqrt[3]{2}$. \footnote{
$\sqrt[3]{2} \to j \sqrt[3]{2}$ produces
$j\sqrt[3]{2} \to j^2 \sqrt[3]{2}$ and
$j^2 \sqrt[3]{2} \to j^3\sqrt[3]{2} = \sqrt[3]{2}$. This statement
corresponds the fact that
the minimal polynomial is $X^3 - 2$ there and thus we
have 3 roots: $\sqrt[3]{2}$, $j \sqrt[3]{2}$ and $j^2
\sqrt[3]{2}$
}. Lets call it $\sigma$
\end{enumerate}
The group of automorphism of $L$ $Aut\left(L/K\right)$ is embedded
into permutation group of 3 elements $S_3$ (see example \ref{ex:s3group}):
\[
Aut\left(L/K\right) \hookrightarrow S_3.
\]
It's embedded because the automorphism exchanges the roots of
$X^3-2$. Moreover
\[
Aut\left(L/K\right) = S_3,
\]
because $\sigma$ and $\tau$ generates $S_3$ because
\begin{itemize}
\item $\sigma$: $\sqrt[3]{2} \to j \sqrt[3]{2} \to j^2 \sqrt[3]{2}
\to \sqrt[3]{2}$. This is a circle.
\item $\tau$ - it keeps $\sqrt[3]{2}$ and exchanges $j$ and $j^2$:
$\sqrt[3]{2} j \leftrightarrow \sqrt[3]{2} j^2$ (see note
\ref{note:lec2_example_j}). This is a
transposition.
\end{itemize}
%% Lets also look at $\mathbb{Q}\left(\sqrt[3]{2}\right)$. The question
%% is the following: how many \mynameref{def:homomorphism}s to $L =
%% \mathbb{Q}\left(\sqrt[3]{2}, j\right)$ do we have. As we know
%% \[
%% L = \mathbb{Q}\left(\sqrt[3]{2}, j\right) =
%% \mathbb{Q}\left(\sqrt[3]{2}, j\sqrt[3]{2}, j^2\sqrt[3]{2}\right),
%% \]
%% i.e. $\sqrt[3]{2}$ can be switched with one of the roots:
%% $\sqrt[3]{2}, j\sqrt[3]{2}, j^2\sqrt[3]{2}$ and each permutation is a
%% homomorphism. To demonstrate it lets look at the following
%% permutation $\sqrt[3]{2} \leftrightarrow j\sqrt[3]{2}$. We have a
%% unique \mynameref{def:isomorphism}
%% \[
%% \mathbb{Q}\left(\sqrt[3]{2}\right) \to
%% \mathbb{Q}\left(j\sqrt[3]{2}\right) \subset L.
%% \]
%% i.e. we have a homomorphism $\mathbb{Q}\left(\sqrt[3]{2}\right) \to
%% L$ associated with the following permutation:
%% $\sqrt[3]{2} \leftrightarrow j\sqrt[3]{2}$
\end{example}
\subsection{Algebraic closure}
\begin{definition}[Algebraically closed field]
$K$ is algebraically closed if any non constant polynomial $P \in
K\left[X\right]$ has a root in $K$ or in other words if any $P \in
K\left[X\right]$ splits
\label{def:algebraicallyclosed}
\end{definition}
\begin{example}[$\mathbb{C}$]
$\mathbb{C}$ is an \mynameref{def:algebraicallyclosed}. This will be
proved later.
\end{example}
\begin{definition}[Algebraic closure]
An algebraic closure of $K$ is a field $L$ that is
\mynameref{def:algebraicallyclosed} and
\mynameref{def:algebraicextension}
over $K$.
\footnote{
If $L$ is algebraic closure of $K$ then the following conditions
are valid
\begin{itemize}
\item $\forall P \in L\left[ X \right]$ $\exists \alpha \in L$
such that $P\left(\alpha\right) = 0$ (see definition of
\mynameref{def:algebraicallyclosed})
\item $\forall \alpha \in L$ $\exists P \in K\left[ X \right]$
such that $P\left(\alpha\right) = 0$ (see definition of
\mynameref{def:algebraicextension})
\end{itemize}
}
\label{def:algebraicclosure}
\end{definition}
\begin{theorem}[About Algebraic closure]
Any field $K$ has an \mynameref{def:algebraicclosure}
\begin{proof}
Lets discuss the strategy of the prove.
First construct $K_1$ such that $\forall P \in K\left[X\right]$
has a root in $K_1$. There is not a victory because $K_1$ can
introduce new coefficients and polynomials that can be irreducible
over $K_1$. Then construct $K_2$ such that $\forall P \in
K_1\left[X\right]$ has a root in $K_2$ and so forth. As result we
will have
\[
K \subset K_1 \subset K_2 \subset \dots \subset K_n \subset \dots
\]
Take $\bar{K} = \cup_i K_i$ and we claim that $\bar{K}$ is
algebraically closed. Really
$\forall P \in \bar{K}\left[X\right]$ $\exists j: P \in
K_j\left[X\right]$ thus it has a root in $K_{j+1}$ and as result
in $\bar{K}$.
Now how can we construct $K_1$. Let $S$ be a set of all
irreducible $P \in K\left[X\right]$. Let
$A = K\left[\left(X_P\right)_{P \in S}\right]$ - multi-variable
(one variable $X_P$ for each $P \in S$) polynomial ring.
Let $I \subset A$ is an \mynameref{def:idealset} $P\left(X_P\right)$
$\forall P \in S$.\footnote
{
$I = \sum_i \lambda_i P_i\left(X_{P_i}\right)$, where $\lambda_i \in A$
}
We claim that $I$ is a \mynameref{def:properideal} i.e. $I \ne
A$. If not then we can write (see theorem \ref{thm:properideal})
\begin{equation}
1_A = \sum_i^n \lambda_i P_i\left(X_{P_i}\right),
\label{eq:properideal_lec2}
\end{equation}
where $\lambda_i \in A$ and the sum is the finite
(see definition \ref{def:idealset}).
As soon as the
sum is finite then I can take the product of the polynomials in
the sum: $P = \prod_i^n P_i$ and I can create a
\mynameref{def:splittingfield} $L$ for the polynomial $P$ over $K$
(see theorem \ref{thm:lec2_1}).
$A$ is a polynomial ring and it's very easy produce a homomorphism
between polynomial algebra and any other algebra. Therefore there
is a homomorphism between rings $A$ and $L$ such that
$\phi: A \to L$ where $X_{P_i} \to \alpha_i$
\footnote{$\alpha_i$ is a root of $P_i$}
if $P =P_i$ and
$X_{P_i} \to 0$ otherwise. From (\ref{eq:properideal_lec2}) we
have
\[
\phi(1_A) = \sum_i^n \lambda_i
\phi\left(P_i\left(X_{p_i}\right)\right) =
\sum_i^n \lambda_i P_i\left(\alpha_i\right) = 0
\]
that is impossible.
Fact: Any \mynameref{def:properideal} $I \subset A$ is contained in
the \mynameref{def:maxideal} $m$ (see proposition
\ref{prop:propermaxideal} below) and $A/m$ is a field (see theorem
\ref{thm:maxideal}).
Thus I can take $K_1 = A/m$ and continue in the same way to
construct $K_2, K_3, \dots, K_n, \dots$.
\end{proof}
\label{thm:lec2_2}
\end{theorem}
\subsection{Ideals in a ring}
\label{sec:lec2_ideals}
The ring is commutative, associative with unity. Any
\mynameref{def:properideal} is in a \mynameref{def:maxideal}. This is a
consequence of what one calls Zorn's lemma
\begin{definition}[Chain]
Let $\mathcal{P}$ is a partially ordered set ($\le$ is the order
relation). $\mathcal{C} \subset \mathcal{P}$ is a chain if
$\forall \alpha, \beta \in \mathcal{C}$ exists a relation between
$\alpha$ and $\beta$ i.e. $\alpha \le \beta$ or $\beta \le \alpha$.
\label{def:chain}
\end{definition}
\begin{lemma}[Zorn]
If any non-empty \mynameref{def:chain} $\mathcal{C}$ in a non-empty set
$\mathcal{P}$ has an upper bound (that is $M \in \mathcal{P}$ such
that $M \ge x, \forall x \in \mathcal{C}$) then $\mathcal{P}$ has a
maximal element.
\label{lem:zorn}
\end{lemma}
\begin{proposition}
Any \mynameref{def:properideal} is in a \mynameref{def:maxideal}
\begin{proof}
We can use \mynameref{lem:zorn} to prove that any proper ideal is
in a \mynameref{def:maxideal}.
Let $\mathcal{P}$ is the set of proper ideals in $A$ containing
$I$. The set is not empty because it has at least one element $I$. Any
\mynameref{def:chain} $\mathcal{C} = \left\{I_\alpha\right\}$
\footnote{
The order is the following $I_\alpha \le I_\beta$ if
$I_\alpha \subset I_\beta$
}
has an upper bound: it's $\cup_\alpha I_\alpha$ (exercise that the
union is an ideal). So $\mathcal{P}$ has a maximal element $m$ and $I
\subset m$.
\end{proof}
\label{prop:propermaxideal}
\end{proposition}
If we take a \mynameref{def:quotientring} by maximal ideal it's always a
field
\footnote{
We refer to it as a theorem with definition provided in
\ref{thm:maxideal}. The comments can be considered as a simple prove
of the fact.
}
otherwise
it will have a proper ideal: $\exists a \in A/m$ such that $(a)$ is a
proper ideal and it pre-image in $\pi: A \to A/m$ should strictly
contain $m$
\footnote{ i.e. $m$ is not a maximal ideal in the case}.
\section{Extension of homomorphisms. Uniqueness of algebraic closure}
Some summary about just proved existence of algebraic closure. There
exists $\bar{K} = \cup_{i=1}^\infty K_i$ - algebraic closure of $K$,
where
\[
K \subset K_1 \subset K_2 \subset \dots \subset K_{i-1} \subset K_i
\subset \dots
\]
$K_i$ is a field where each polynomial $P \in K_{i-1}$ has a root. The
field $K_i$ is \mynameref{def:quotientring} of huge polynomial ring
$K_{i-1}\left[X\right]$ by a suitable \mynameref{def:maxideal} that is
got by means of \mynameref{lem:zorn}.
Another question is the closure unique? The answer is yes. We start
the proof with the following theorem
\begin{theorem}[About extension of homomorphism]
Let $K \subset L \subset M$ - \mynameref{def:algebraicextension}.
$K \subset \Omega$, where $\Omega$ - \mynameref{def:algebraicclosure}
of $K$.
$\forall \phi: L \to \Omega$ extends to $\widetilde{\phi}: M \to
\Omega$
\label{thm:lec2_3}
\footnote{
see also example \ref{ex:homomorphismext}.
}
\begin{proof}
Apply \mynameref{lem:zorn} to the following set (of pairs)
\[
\mathcal{E} = \left\{
\left(N, \psi\right): L \subset N \subset M, \psi \mbox{ extends }
\phi
\right\}
\]
$\mathcal{E}$ is non empty because $\left(L,\phi\right) \in
\mathcal{E}$.
The set $\mathcal{E}$ is partially ordered by the following
relation ($\le$):
\[
\left(N, \psi\right) \le \left(N', \psi'\right),
\]
if $N \subseteq N'$ and $\psi'/N = \psi$ ($\psi'$ extends $\psi$).
Any \mynameref{def:chain} $\left(N_\alpha, \psi_\alpha\right)$
has an upper bound $\left(N, \psi\right)$, where
\(
N = \cup_\alpha N_\alpha
\) - field, sub extension of $M$. $\psi$ defined in the following
way: for $x \in N_\alpha$ $\psi(x) = \psi_\alpha(x)$.
Thus $\mathcal{E}$ has a maximal element that we denote by
$\left(N_0, \psi_0\right)$.
Lets suppose that $N_0 \ne M$, i.e.
$N_0 \subsetneq M$. Now it's very easy to get a
contradiction. Lets take $x \in M \setminus N_0$ and consider
\mynameref{def:minpolynomial} $P_{min}\left(x, N_0\right)$. It
should have a root $\alpha \in \Omega$. Now we extend $N_0$ to
$N_0\left(x\right)$ and define $\psi'$ on
$N_0\left(x\right)$ as follows: $\forall y \in N_0: \psi'(y)
= \psi_0(y)$ and $\psi'(x) = \alpha$. Thus we was able to find an
element of the chain that is greater than maximal. Therefore our
assumption about $N_0 \ne M$ was incorrect and we can conclude
than $N_0 = M$ and therefore $\tilde{\phi} = \psi_0$.
\end{proof}
\end{theorem}
\begin{corollary}[About algebraic closure isomorphism]
If $\Delta$ and $\Delta'$ are 2 algebraic closures of $K$ then they
are isomorphic as K-algebras.
\label{col:algebraic_closure_isomorphism}
\begin{proof}
Using theorem \ref{thm:lec2_3} one can assume
$L = K$, $M = \Delta'$ and $\Omega = \Delta$ i.e. we have
\[
K \subset K \subset \Delta'
\]
in this case homomorphism $K \to \Delta$ can be extended to
$\Delta' \to \Delta$ i.e. there exists a homomorphism
(i.e. \mynameref{def:injection}) from $\Delta'$ to $\Delta$.
If we assume $M = \Delta$ and $\Omega = \Delta$ then there exists
a homomorphism (i.e. \mynameref{def:injection}) from $\Delta$ to
$\Delta'$. The \mynameref{def:injection} is also
\mynameref{def:surjection} in another direction: $\Delta' \to
\Delta$ and as result we have \mynameref{def:isomorphism} $\Delta' \to
\Delta$
\end{proof}
\end{corollary}