-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrelaxation.cpp
373 lines (331 loc) · 10.5 KB
/
relaxation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
/**
* Simulation of a relaxation oscillator
*
* Copyright 2020 Jason Leake
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <cstdlib>
#include <exception>
#include <fstream>
#include <iostream>
#include <optional>
using floating = double;
/**
* This class represents the capacitor. It is an ideal device without
* any resistance, leakage etc.
*/
class Capacitor {
private:
// Capaitor value
const floating capacitance;
// Charge stored in the capacitor
floating totalCharge;
public:
// Constructor. Initial charge is zero.
Capacitor(floating capacitance) : capacitance(capacitance) {}
virtual ~Capacitor() = default;
/**
* Add charge to the capacitor
*
* @param charge to add. Can be positive or negative.
*/
void addCharge(floating charge) {
totalCharge += charge;
}
/**
* Get the voltage across the capacitor
*
* @return voltage across capacitor
*/
auto voltage() const {
return totalCharge / capacitance;
}
};
/**
* This class represents the resistance
*/
class Resistor {
private:
const floating resistance;
public:
/**
* Constructor
*/
Resistor(floating resistance) : resistance{resistance} {}
virtual ~Resistor() = default;
/**
* Calculate the current flowing through the resistor.
*
* @param v1 voltage one side of the resistor
* @param v2 voltage on the other side of the resistor
* @return current through the resistor
*/
auto current(floating v1, floating v2) const {
return (v1 - v2) / resistance;
}
};
/**
* This class simulates the inverter. It has a Schmitt trigger, so
* that the voltage threshold for transitioning to a low input state
* is different to that for transitioning to a high input state. It
* is an ideal device, with zero propagation delay, infinite input
* impedance and zero output impedance.
*/
class Inverter {
private:
// Output voltage in high state
const floating outputHi;
// Output voltage in low state
const floating outputLow;
// Input voltage needed for transition of input from high to low state
const floating hiLowTransition;
// Input voltage needed for transistion of input from low to high state
const floating lowHiTransition;
// Current output state - true if high
bool hi;
public:
/**
* Set the input voltage.
*
* @param voltage input voltage
*/
auto setInputVoltage(floating voltage) {
if (hi) {
if (voltage >= lowHiTransition) {
// Input state is high, so output state is false
hi = false;
}
} else if (voltage <= hiLowTransition) {
// Input state is false, so output state is true
hi = true;
}
}
/**
* Constructor. Initial state is low.
*
* @param outputLow low state output voltage
* @param outputHi high state output voltage
* @param hiLowTransition transition voltage to take input from high to low
* @param lowHiTransition transition voltage to take input from low to high
*/
Inverter(floating outputLow,
floating outputHi,
floating hiLowTransition,
floating lowHiTransition,
floating voltage) :
outputHi{outputHi},
outputLow{outputLow},
hiLowTransition{hiLowTransition},
lowHiTransition{lowHiTransition} {
setInputVoltage(voltage);
}
/**
* Get the output voltage
*
* @return output voltage
*/
auto getOutputVoltage() const {
// High state produces high output voltage, low state produces low output
// voltage
return hi ? outputHi : outputLow;
}
};
/**
* This class keeps track of the current state, recording the time interval
* since the previous state change
*/
class StateMonitor {
private:
std::optional<floating> highInterval;
std::optional<floating> lowInterval;
std::optional<floating> previousTime;
public:
/**
* Flag a state change.
*
* @param stateHigh true if state changed to high, false if changed to low
* @param time at which the state changed
*/
auto stateChange(bool stateHigh, floating time) {
if (stateHigh) {
std::cout << "Signal high at " << time;
}
else {
std::cout << "Signal low at " << time;
}
if (previousTime.has_value()) {
auto interval = time - previousTime.value();
std::cout << ", interval since last state change = "
<< interval << " seconds";
if (stateHigh) {
if (!lowInterval.has_value()) {
lowInterval = interval;
}
}
else if (!highInterval.has_value()) {
highInterval = interval;
}
}
std::cout << "\n";
previousTime = time;
}
/**
* Return the cycle period
*
* @return cycle period in seconds
*/
auto getPeriod() const {
return highInterval.value() + lowInterval.value();
}
};
/**
* Convert text field to numeric value. e.g. "1.23e-6" to a floating
* point value. Throws an exception and terminates program if this isn't
* possible.
*
* @param field text field to convert
* @return numeric value
*/
auto convert(const char* field) {
try {
auto retval = std::stod(field);
return static_cast<floating>(retval);
}
catch (std::invalid_argument& e) {
std::cerr << "Unable to convert \"" << field << "\" to numeric\n";
std::exit(EXIT_FAILURE);
}
}
int main(int argc, char** argv) {
// Writes this file containing per-timestep simulation values
constexpr auto CSV_FILENAME = "output.csv";
// Writes this file containing description of settings and derived frequency
constexpr auto DESCR_FILENAME = "description.dat";
// Default values
auto resistance = floating{1e3};
auto capacitance = floating{1e-7};
auto logicLowVoltage = floating{0};
auto logicHighVoltage = floating{5.0};
auto logicLowTransitionVoltage = floating{0.6};
auto logicHighTransitionVoltage = floating{2.5};
if (argc > 1) {
resistance = convert(argv[1]);
} else {
std::cout << "Using default resistance\n";
}
if (argc > 2) {
capacitance = convert(argv[2]);
} else {
std::cout << "Using default capacitance\n";
}
if (argc > 3) {
logicLowVoltage = convert(argv[3]);
} else {
std::cout << "Using default low voltage\n";
}
if (argc > 4) {
logicHighVoltage = convert(argv[4]);
} else {
std::cout << "Using default high voltage\n";
}
if (argc > 5) {
logicLowTransitionVoltage = convert(argv[5]);
}
else {
std::cout << "Using default high->low state transition voltage\n";
}
if (argc > 6) {
logicHighTransitionVoltage = convert(argv[6]);
} else {
std::cout << "Using default low->high state transition voltage\n";
}
std::cout << "\n";
std::cout << "R = " << resistance << " ohms\n";
std::cout << "C = " << capacitance << " farads\n";
std::cout << "Logic high = " << logicHighVoltage << " volts\n";
std::cout << "Logic low = " << logicLowVoltage << " volts\n";
std::cout << "Logic high to low transition = " << logicHighTransitionVoltage
<< " volts\n";
std::cout << "Logic low to high transition = " << logicLowTransitionVoltage
<< " volts\n";
std::cout << "\n";
auto descriptionFile = std::ofstream(DESCR_FILENAME);
if (descriptionFile) {
descriptionFile << "FILE = " << CSV_FILENAME << "\n";
descriptionFile << "RESISTANCE = " << resistance << "\n";
descriptionFile << "CAPACITANCE = " << capacitance << "\n";
descriptionFile << "LH = " << logicHighVoltage << "\n";
descriptionFile << "LL = " << logicLowVoltage << "\n";
descriptionFile << "LLT = " << logicHighTransitionVoltage << "\n";
descriptionFile << "LHT = " << logicLowTransitionVoltage << "\n";
} else {
std::cerr << "Unable to open " << DESCR_FILENAME << " for writing\n";
}
auto inverter = Inverter{logicLowVoltage,
logicHighVoltage,
logicLowTransitionVoltage,
logicHighTransitionVoltage, 0};
auto capacitor = Capacitor{capacitance};
auto resistor = Resistor{resistance};
auto timeConstant = capacitance * resistance;
std::cout << "Approx time constant is " << timeConstant
<< " seconds\n";
// Plot about ten cycles. Each cycle is a million timesteps.
auto timestepSize = 1e-4 * timeConstant;
auto numberOfTimesteps = 10 * timeConstant / timestepSize;
std::cout << "Run for " << numberOfTimesteps * timestepSize << " seconds\n";
std::cout << "Timestep size is " << timestepSize << " seconds\n";
auto out = std::ofstream{CSV_FILENAME};
if (!out.is_open()) {
std::cerr << "Unable to open " << CSV_FILENAME << " for writing\n";
return EXIT_FAILURE;
}
std::cout << "\n";
auto stateMonitor = StateMonitor{};
auto lastInverterOutput = std::optional<floating>{};
for (auto step = 0; step < numberOfTimesteps; step++) {
auto capacitorVoltage = capacitor.voltage();
auto inverterVoltage = inverter.getOutputVoltage();
auto current = resistor.current(inverterVoltage, capacitorVoltage);
// Linear approximate the charge flowing into the capacitor
auto charge = current * timestepSize;
capacitor.addCharge(charge);
inverter.setInputVoltage(capacitor.voltage());
auto inverterOutput = inverter.getOutputVoltage();
out << step * timestepSize << "," <<
capacitor.voltage() << ", " << inverterOutput << "\n";
if (!lastInverterOutput.has_value()) {
lastInverterOutput = inverterOutput;
}
else if (lastInverterOutput != inverterOutput) {
lastInverterOutput = inverterOutput;
stateMonitor.stateChange(inverterOutput == logicHighVoltage,
step * timestepSize);
}
}
std::cout << "\n";
auto frequency = 1./stateMonitor.getPeriod();
std::cout << "Frequency is " << frequency << " Hz" << std::endl;
descriptionFile << "FREQUENCY = " << frequency << "\n";
descriptionFile.close();
return EXIT_SUCCESS;
}