You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+4-1Lines changed: 4 additions & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -650,6 +650,7 @@ We also build on top of many great packages. Please check them out!
650
650
-[Revealing the Galaxy-Halo Connection Through Machine Learning](https://arxiv.org/pdf/2204.10332.pdf)
651
651
-[How the Galaxy–Halo Connection Depends on Large-Scale Environment](https://arxiv.org/pdf/2402.07995.pdf)
652
652
-[Explainable Artificial Intelligence for COVID-19 Diagnosis Through Blood Test Variables](https://link.springer.com/content/pdf/10.1007/s40313-021-00858-y.pdf)
653
+
-[A diagnostic support system based on interpretable machine learning and oscillometry for accurate diagnosis of respiratory dysfunction in silicosis](https://www.biorxiv.org/content/10.1101/2025.01.08.632001v1.full.pdf)
653
654
-[Using Explainable Boosting Machines (EBMs) to Detect Common Flaws in Data](https://link.springer.com/chapter/10.1007/978-3-030-93736-2_40)
654
655
-[Differentially Private Gradient Boosting on Linear Learners for Tabular Data Analysis](https://assets.amazon.science/fa/3a/a62ba73f4bbda1d880b678c39193/differentially-private-gradient-boosting-on-linear-learners-for-tabular-data-analysis.pdf)
655
656
-[Differentially private and explainable boosting machine with enhanced utility](https://www.sciencedirect.com/science/article/abs/pii/S0925231224011950)
@@ -659,6 +660,7 @@ We also build on top of many great packages. Please check them out!
659
660
-[Towards Cleaner Cities: Estimating Vehicle-Induced PM2.5 with Hybrid EBM-CMA-ES Modeling](https://www.mdpi.com/2305-6304/12/11/827)
660
661
-[Using machine learning to assist decision making in the assessment of mental health patients presenting to emergency departments](https://journals.sagepub.com/doi/full/10.1177/20552076241287364)
661
662
- [Proposing an inherently interpretable machine learning model for shear strength prediction of reinforced concrete beams with stirrups](https://pdf.sciencedirectassets.com/287527/1-s2.0-S2214509523X00035/1-s2.0-S2214509524005011/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjECUaCXVzLWVhc3QtMSJGMEQCIB0r0KsYBZufOjbCVtUtozwn1QKMdLt2tbbfhuJKjWlXAiB5Dfr7p0yyj%2FSfypTLmjPL8WbjGAB3tRACFjyyqQbbfiq8BQiu%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAUaDDA1OTAwMzU0Njg2NSIMqBpZ2HmN91c%2BJPqpKpAFZtvqQjCScZa4FN%2FeubsPzOk5c%2B58LliO4Zr%2Bn1pm3vtW4I9I1vA29pkhT5was1N3ccPPIm2jNLwJ%2FHiZej7A2SmFv13Ro3sTvhqG%2F6A9Xx70Nx9jOlDPJUmCypKadKp0FGfuhZQuxeN0b%2F1QUUQZG4RpxC%2FXorRRHmb%2FrXcOWBwu4PmLZAkWmTKpncjDI7oj8eh8yBe6%2FA3JkJ14ZyBgR7JnPzR2ZqMdIhvlKoyMn6EnL1Azq2y3qwEMdzSCvz3wH3sT4pClc2vPs6ruQS4CdT3E7BHrf42Q0VnUXWjuy7gt9iRr0vaWR3tD%2FxyrrEKw7XuMHO9L4rQ4Pfn1dhGZ2J8H5ocwJGSh13U5fY6noyaTNViqvHx1oHNMWL03QpkJxmUxYquBWepcDjxEc32V6eGF7Ecm8Vij3s20wdRNcHqxGFKlUCgph48CKUA79iwSGQCkWQh7bq%2FTtowTbSPud7l8xeG1MvfIVy%2B6yzrjqygvPBQs3qkvdoWUrKXe57bhr2jEkKlSdYyp2TJMD6yoYRdTPyFx5xb0KgIt6KQTPmfbqYXkd3FFz3uc0HmWC5NQz6qP9UzNcBhcK8dXo3Dw042pl0HLO1njFaa%2BBfbT89VUVUIqjrAcmHweIl1v7Eyldzr%2BGBXIlsxPO3gPzyPLF2LTggc6dA%2Bswxmgmkv%2B7n5pU5%2F5sxvEhemb%2Fqu%2B8d47O%2Bn6RH8fL4eLGGL2d0dvFvyE7gEwt%2BaU9HsIN0IHqyH5VmaTF5zaKy%2Fn%2BhkF8yGpe5Hq5yNOUGrfQgfyFn4Kqd%2FTVajxIFzk8DEY%2F%2FFtyGJ%2B8BrHV4P%2FYs8R4XcBzPQtyrTuUC1CGmF01Tc2gnnEo4pVPaIjfBk9B%2BXVMc3Mu4Ywy4L%2BsgY6sgFK3hFIXjIfoVjqrIlBvsGYaFiZB1bVKBVy3DRiBgozzYmIVhipN%2FS%2BPok1oETqvYVvLqEVkGcb5W7nUIK16lFgjwDq6ePuxdqSafgOw5jVQroNsDCPRz8B%2F4fg7kv6gs4R9SX7gCaQ2V7L6NxqJDUUqsCMtIYq05Qx43dGByqLoVEz9USpRBmTLQwpGvOmUaGNNwTsCwmt5gRP8UX3CnkwI%2FydxmhrXLEdaUIFVwJbIor9&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240604T221639Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY4E2DAHPF%2F20240604%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=eece32da8855b55208baecc0ce041e79aa03be1c292b58c67ce0215de36cbdb4&hash=46dd1da122f4cea242c6444a811fb16dde5cb8465e88552ac3eaeee97b975e9b&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S2214509524005011&tid=spdf-45c1c4d1-dd97-4c0d-a04f-c30843a79e78&sid=1fea53ed2d5cf1443e4a7c4-33f4bf6475e1gxrqa&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=0f155c5f060d565b01055d&rr=88eb49dd2a5f7688&cc=us)
663
+
- [A hybrid machine learning approach for predicting fiber-reinforced polymer-concrete interface bond strength](https://download.ssrn.com/eaai/e646e179-ec4a-4987-80b5-8d6bbf43ceda-meca.pdf?response-content-disposition=inline&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBMaCXVzLWVhc3QtMSJHMEUCIFVH%2Ba5TT2NOEqgCl7GMhXBXBZWE9VzzcRFT6kYXzdxYAiEA4yvXsrzNQnNq%2BkJRB0rw1d2p35f418pIO%2FT3PHKoZ%2BoqxgUI%2B%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAEGgwzMDg0NzUzMDEyNTciDCD0kCrKAqamcwb9LCqaBb4zlqjDhNBhf%2Frbe%2FX3lzSjvS58HiJQtbOHmzaM7putg93e7Wk8nPesoiupTH8uB5ejDC7stGJElRZp5ulT5M6CokoMu82ERn15kMpkgptj3MVEmsY9VTCP%2BCbROJ6v4YcAttOOAEzOc2M6li6o0w4IsF8DNXEIJr%2FJvjB3IDYPkrmpIiHl25h3AzfxPuOF01E2rgucLnY0xTyKGnPBBDZ%2FPtcuqlk2NKun3Q9HbcKj8EPJP%2FPupMW3IQvMnhcdJqqLHXs6wL1P42NTw5vtZO2W5WiEC1CNGDFUTSFRdb9hjhpH4JsYl8X%2BSFT6mZ31K2HTWeuigs5nXp1JN8r8r4O021yiVxHAJ6Chnddr0Z19iM5yOZA4H1EhO1rxxL0VF%2F%2F8Ac3GxuEfkBiug5wuL7aNlBNX6720pYfHH%2FgyrqdU5KSDIp8VYw3KgEij0LkizBHQIoolC48VAEMNc%2F8iWOdZpAVYprhEbABbff8%2BW6c4y1N9vmLTkjZkJtZODpzpQVjrHkL9hAOvmXZocEEN6maRoVJx3DlcTHrfQr8%2BQnPQnmajb5x0FHo44xxBIUt7UB4FOc6beDprle%2F7BO2SNEPLw6rJ9e3WJeVaYch46iqk2tiWFroNHDXlQ73CbzV59AEVtLAR29eIf7uyz%2BU0fOAXG5oAsJyB7YXUjH%2Bh79sxJgBq3%2FoqkEja06CFPRhWeqxixc8y9bEU%2FvvjhfbcWcxGY%2Be%2FwnXbemUbSyr26Y5xvADyicKIMexZNjeHBJ9MKMifQ9oh%2FjmudjxtMLbTpA6EAxMelLjhWcoURF0XeTttMEzEuTjO1OXUwMeXSPZ9roJqH3DB4PHi%2B8UIUG1JoVocv7wDu5ZVlMzgmDr0ti1BShKr9szxagq34jCEkJe8BjqxAbm7bsef33J3AImECx0GZeL0R2tFJZ7ctogL261zP7RqJ4T71rDMbpyfX6HfGuNEbWVROKHUexpuH8FZBodmn%2FjDjZSviK1oxQ1L5TDA2rwMsodnThreIad8vSXqxAzx9qng%2BeN2llXkNdIB7WEnkttzcJ24pZqwYnPI%2FsOznTq%2BDJ88mdNPtzph%2FGdVQcR99tV3waapotTEnUjjoqTTSh9aMgi1jIYMGMrJj6Jb4N%2FhWA%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20250114T024208Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAUPUUPRWEXKDDLJZE%2F20250114%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=11c6f325f84736d5324ab155663c94231696de52be8910a03bb5e9c18f0d1689&abstractId=5055231)
662
664
-[Using explainable machine learning and fitbit data to investigate predictors of adolescent obesity](https://www.nature.com/articles/s41598-024-60811-2)
663
665
- [Interpretable Predictive Value of Including HDL-2b and HDL-3 in an Explainable Boosting Machine Model for Multiclass Classification of Coronary Artery Stenosis Severity in Acute Myocardial Infarction Patients](https://watermark.silverchair.com/ztae100.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAA2owggNmBgkqhkiG9w0BBwagggNXMIIDUwIBADCCA0wGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMnDqoUBnqG9Zyr0dAAgEQgIIDHT2M3owEzTRAV3KZzrOpzyqOYgClio-CQrzB5731fvsEe9ZWO_QfqQAKdaPyyOsEKjacd25hWs-_OvgXCqc36R4yFWu46PFOCApII2s3hbHYI1XEQozWfdyosgaQf_e7_5RIqIfwTEHt19LoYZuaDYjCqq2vmWOMZb6dNI6mz-h3Zd6BgbyYAFgRHiJfU94NU0Crf_AbbTx2jW3HqMBLYPn-ysUiyQYILNmqlKAAlw81ZjBwzusaQFsiJMCxwGyFHks7nwtnUQ8J5PU5Jelp8_fQ8x5_dlZvzvdkI9MR87zUkk4hm2XL0uyfvH92-7VV_2gMe-rU3aJZhbHJu2hENPDh_OmoDe7SOC-5EwPsgIDoDr_dgSgyhBMIbOk_TrSM4oEN6dbtvfLSDXQUWDV4semLuPjqz7WyiQz4PPt1mXuaf12X5xyVsf1Mms4UpGAKLyoCdJ-zDJ9csOPCefIsV2Bzs-KzaD63HWFLJuCU0hWIaK0QOcJATnpQb1PhFiAF6YZ_cCYTxkuAcrQyHS-WCEefNy8hB8PQXhNljtw0J499qdnLcNOM1gAQ3-o21KaTrEFs-DyvZwWmaGn8Zw1bK1CG8yVxWOh6_wjJpGjMMenstzrKFcLbJADs1yf3PuNGZds0g-Qf4NDcgsturcr0V1nLHVRFazWZhUKSeRnLjPzA5i3lVKnmwKjKa_50i0LMSIXNFS-dmvHs-qVUb8FO0_aKZ6egckXkoGG8w3Jox4MhhY2-B28Z0wbJOj8_DojCCtAmAPC0T5emRsuk1rkuRXIoMtFDWN0l7fr7RVkuy1TEd3mpa5UuU7Qo-wu_yqi6ibwLupjGeVN__7SeteoBSh8yFJgYN4BEiYmdkEX7DgKaMC90h5GakNJ7zeAPR9PFnQVRORoof04qMWK4aGod2igso1-qsCup-kVWmPy8zrQKlqxE4OCeqUpKQgZMUUAlFu643iuRnQuLnahXhui45TY8lS56XGCLqkwSG594lMoAXAYZ9tVFM4fAVwQJ3EWkJfHRRCWWGZfLwBPsdUnNEziGg4QIdrKhe-Fu7nLF)
664
666
-[Estimate Deformation Capacity of Non-Ductile RC Shear Walls Using Explainable Boosting Machine](https://arxiv.org/pdf/2301.04652.pdf)
@@ -682,6 +684,8 @@ We also build on top of many great packages. Please check them out!
682
684
-[Binary ECG Classification Using Explainable Boosting Machines for IoT Edge Devices](https://ieeexplore.ieee.org/document/9970834)
683
685
-[Explainable artificial intelligence toward usable and trustworthy computer-aided diagnosis of multiple sclerosis from Optical Coherence Tomography](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406231/)
684
686
-[An Interpretable Machine Learning Model with Deep Learning-based Imaging Biomarkers for Diagnosis of Alzheimer’s Disease](https://arxiv.org/pdf/2308.07778.pdf)
687
+
-[Prediction of Alzheimer Disease on the DARWIN Dataset with Dimensionality Reduction and Explainability Techniques](https://www.scitepress.org/Papers/2024/130174/130174.pdf)
688
+
-[Explainable Boosting Machine for Predicting Alzheimer’s Disease from MRI Hippocampal Subfields](https://link.springer.com/chapter/10.1007/978-3-030-86993-9_31)
685
689
-[Comparing explainable machine learning approaches with traditional statistical methods for evaluating stroke risk models: retrospective cohort study](https://pureadmin.qub.ac.uk/ws/portalfiles/portal/495863198/JMIR_Cardio.pdf)
686
690
-[Explainable Artificial Intelligence for Cotton Yield Prediction With Multisource Data](https://ieeexplore.ieee.org/document/10214067)
687
691
-[Preoperative detection of extraprostatic tumor extension in patients with primary prostate cancer utilizing](https://insightsimaging.springeropen.com/articles/10.1186/s13244-024-01876-5)
@@ -737,7 +741,6 @@ We also build on top of many great packages. Please check them out!
737
741
-[Death by Round Numbers and Sharp Thresholds: How to Avoid Dangerous AI EHR Recommendations](https://www.medrxiv.org/content/10.1101/2022.04.30.22274520v1.full.pdf)
738
742
-[Building a predictive model to identify clinical indicators for COVID-19 using machine learning method](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037972/pdf/11517_2022_Article_2568.pdf)
739
743
-[Using Innovative Machine Learning Methods to Screen and Identify Predictors of Congenital Heart Diseases](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777022/pdf/fcvm-08-797002.pdf)
740
-
-[Explainable Boosting Machine for Predicting Alzheimer’s Disease from MRI Hippocampal Subfields](https://link.springer.com/chapter/10.1007/978-3-030-86993-9_31)
741
744
-[Impact of Accuracy on Model Interpretations](https://arxiv.org/pdf/2011.09903.pdf)
742
745
-[Machine Learning Algorithms for Identifying Dependencies in OT Protocols](https://www.mdpi.com/1996-1073/16/10/4056)
743
746
-[Causal Understanding of Why Users Share Hate Speech on Social Media](https://arxiv.org/pdf/2310.15772.pdf)
0 commit comments