forked from djay/covidthailand
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_scraping_tableau.py
298 lines (270 loc) · 12.6 KB
/
utils_scraping_tableau.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import itertools
import json
from utils_scraping import any_in, fix_timeouts, remove_suffix
import tableauscraper
import pandas as pd
import numpy as np
import time
from tableauscraper.TableauScraper import TableauException
from tableauscraper.api import APIResponseException
import datetime
import requests
from requests.exceptions import RequestException
###########################
# Tableau scraping
###########################
def workbook_explore(workbook):
print()
print()
print("storypoints:", workbook.getStoryPoints())
print("parameters", workbook.getParameters())
for t in workbook.worksheets:
print()
print(f"worksheet name : {t.name}") # show worksheet name
print(t.data) #show dataframe for this worksheet
print("filters: ")
for f in t.getFilters():
print(" ", f['column'], ":", f['values'][:10], '...' if len(f['values']) > 10 else '')
print("selectableItems: ")
for f in t.getSelectableItems():
print(" ", f['column'], ":", f['values'][:10], '...' if len(f['values']) > 10 else '')
def workbook_flatten(wb, date=None, **mappings):
"""return a single DataFrame from a workbook flattened according to mappings
mappings is worksheetname=columns
if columns is type str puts a single value into column
if columns is type dict will map worksheet columns to defined dataframe columns
if those column names are in turn dicts then the worksheet will be pivoted and the values mapped to columns
e.g.
worksheet1="Address",
worksheet2=dict(ws_phone="phone", ws_state="State"),
worksheet3=dict(ws_state=dict(NSW="State: New South Wales", ...))
"""
# TODO: generalise what to index by and default value for index
res = pd.DataFrame()
data = dict()
if date is not None:
data["Date"] = [date]
for name, col in mappings.items():
try:
df = wb.getWorksheet(name).data
except (KeyError, TypeError, AttributeError):
# TODO: handle error getting wb properly earlier
print(f"Error getting tableau {name}/{col}", date)
continue
if type(col) != str:
if df.empty:
print(f"Error getting tableau {name}/{col}", date)
continue
# if it's not a single value can pass in mapping of cols
df = df[col.keys()].rename(columns={k: v for k, v in col.items() if type(v) == str})
df['Date'] = pd.to_datetime(df['Date']).dt.normalize()
# if one mapping is dict then do pivot
pivot = [(k, v) for k, v in col.items() if type(v) != str]
if pivot:
pivot_cols, pivot_mapping = pivot[0] # can only have one
# Any other mapped cols are what are the values of the pivot
df = df.pivot(index="Date", columns=pivot_cols)
df = df.drop(columns=[c for c in df.columns if not any_in(c, *pivot_mapping.keys())]) # Only keep cols we want
df = df.rename(columns=pivot_mapping)
df.columns = df.columns.map(' '.join)
df = df.reset_index()
df = df.set_index("Date")
# Important we turn all the other data to numberic. Otherwise object causes div by zero errors
df = df.apply(pd.to_numeric, errors='coerce', axis=1)
# If it's only some days rest we can assume are 0.0
# TODO: we don't know how far back to look? Currently 30days for tests and 60 for others?
start = date - datetime.timedelta(days=10) if date is not None else df.index.min()
start = max([start, df.index.min()])
# Some data like tests can be a 2 days late
# TODO: Should be able to do better than fixed offset?
end = date - datetime.timedelta(days=5) if date is not None else df.index.max()
end = max([end, df.index.max()])
assert date is None or end <= date
all_days = pd.date_range(start, end, name="Date", normalize=True, closed=None)
try:
df = df.reindex(all_days, fill_value=0.0)
except ValueError:
return pd.DataFrame() # Sometimes there are duplicate dates. if so best abort the whole workbook since something is wrong
res = res.combine_first(df)
elif df.empty:
# TODO: Seems to mean that this is 0? Should be confirgurable?
data[col] = [0.0]
elif col == "Date":
data[col] = [pd.to_datetime(list(df.loc[0])[0], dayfirst=False)]
else:
data[col] = list(df.loc[0])
if data[col] == ["%null%"]:
data[col] = [np.nan]
# combine all the single values with any subplots from the dashboard
df = pd.DataFrame(data)
if not df.empty:
df['Date'] = df['Date'].dt.normalize() # Latest has time in it which creates double entries
res = df.set_index("Date").combine_first(res)
return res
def workbook_iterate(url, **selects):
"generates combinations of workbooks from combinations of parameters, selects or filters"
def do_reset(attempt=0):
if attempt == 3:
return None
ts = tableauscraper.TableauScraper()
try:
ts.loads(url)
except (RequestException, TableauException, KeyError):
print("MOPH Dashboard", f"Error: Timeout Loading url {url}")
return do_reset(attempt=attempt + 1)
fix_timeouts(ts.session, timeout=30)
wb = ts.getWorkbook()
return wb
wb = do_reset()
if wb is None:
return
set_value = []
# match the params to iterate to param, filter or select
for name, values in selects.items():
param = next((p for p in wb.getParameters() if p['column'] == name), None)
if param is not None:
if type(values) == str:
selects[name] = param['values']
else:
# assume its a list of values to use
pass
def do_param(wb, value, name=name):
value = value if type(value) != datetime.datetime else str(value.date())
return force_setParameter(wb, name, value)
set_value.append(do_param)
continue
ws = next(ws for ws in wb.worksheets if ws.name == name)
# TODO: allow a select to be manual list of values
svalues = ws.getSelectableValues(values)
if svalues:
selects[name] = svalues
# weird bug where sometimes .getWorksheet doesn't work or missign data
def do_select(wb, value, name=name, values=values):
ws = next(ws for ws in wb.worksheets if ws.name == name)
return ws.select(values, value)
set_value.append(do_select)
else:
items = ws.getFilters()
# TODO: allow filter to manual list of values
selects[name] = next(item['values'] for item in items if item['column'] == values)
# weird bug where sometimes .getWorksheet doesn't work or missign data
def do_filter(wb, value, ws_name=name, filter_name=values):
ws = next(ws for ws in wb.worksheets if ws.name == ws_name)
# return ws.setFilter(values, value)
return force_setFilter(wb, ws_name, filter_name, [value])
set_value.append(do_filter)
last_idx = [None] * len(selects)
# Get all combinations of the values of params, select or filter
for next_idx in itertools.product(*selects.values()):
def get_workbook(wb=wb, next_idx=next_idx):
nonlocal last_idx
reset = False
for _ in range(3):
if reset:
wb = do_reset()
if wb is None:
continue
reset = False
for do_set, last_value, value in zip(set_value, last_idx, next_idx):
if last_value != value:
try:
wb = do_set(wb, value)
except (RequestException, TableauException, KeyError, APIResponseException, IndexError, StopIteration) as err:
print(next_idx, "MOPH Dashboard", f"Retry: {do_set.__name__}={value} Timeout Error: {err}")
reset = True
break
if not wb.worksheets:
print(next_idx, "MOPH Dashboard", f"Retry: Missing worksheets in {do_set.__name__}={value}.")
reset = True
break
if reset:
last_idx = (None,) * len(last_idx) # need to reset filters etc
continue
last_idx = next_idx
return wb
# Try again
print(next_idx, "MOPH Dashboard", f"Skip: {next_idx}. Retries exceeded")
return None
yield get_workbook, next_idx
def force_setParameter(wb, parameterName, value):
scraper = wb._scraper
tableauscraper.api.delayExecution(scraper)
payload = (
("fieldCaption", (None, parameterName)),
("valueString", (None, value)),
)
r = scraper.session.post(
f'{scraper.host}{scraper.tableauData["vizql_root"]}/sessions/{scraper.tableauData["sessionid"]}/commands/tabdoc/set-parameter-value',
files=payload,
verify=scraper.verify
)
scraper.lastActionTime = time.time()
if r.status_code >= 400:
raise requests.exceptions.RequestException(r.content)
resp = r.json()
wb.updateFullData(resp)
return tableauscraper.dashboard.getWorksheetsCmdResponse(scraper, resp)
# :path: /vizql/w/SATCOVIDDashboard/v/2-dash-tiles-province-w/sessions/B42533EE979D4E389C1F8119C87E70C8-0:0/commands/tabdoc/dashboard-categorical-filter
# referer: https://public.tableau.com/views/SATCOVIDDashboard/2-dash-tiles-province-w?:size=1200,1050&:embed=y&:showVizHome=n&:bootstrapWhenNotified=y&:tabs=n&:toolbar=n&:apiID=host0
# dashboard: 2-dash-tiles-province-w
# qualifiedFieldCaption: province
# exclude: false
# filterUpdateType: filter-replace
# filterValues: ["กรุงเทพมหานคร"]
# visualIdPresModel: {"worksheet":"D4_CHART","dashboard":"4-dash-trend-w"}
# globalFieldName: [sqlproxy.0ti7s471dkws67105310p0g3vagu].[none:age_range:nk]
# membershipTarget: filter
# filterUpdateType: filter-delta
# filterAddIndices: []
# filterRemoveIndices: [2]
def force_setFilter(wb, ws_name, columnName, values):
"setFilter but ignore the listed filter options. also gets around wrong ordinal value which makes index value incorrect"
scraper = wb._scraper
tableauscraper.api.delayExecution(scraper)
ws = next(ws for ws in wb.worksheets if ws.name == ws_name)
filter = next(
{
"globalFieldName": t["globalFieldName"],
}
for t in ws.getFilters()
if t["column"] == columnName
)
payload = (
("dashboard", scraper.dashboard),
("globalFieldName", (None, filter["globalFieldName"])),
("qualifiedFieldCaption", (None, columnName)),
("membershipTarget", (None, "filter")),
("exclude", (None, "false")),
("filterValues", (None, json.dumps(values))),
("filterUpdateType", (None, "filter-replace"))
)
try:
r = scraper.session.post(
f'{scraper.host}{scraper.tableauData["vizql_root"]}/sessions/{scraper.tableauData["sessionid"]}/commands/tabdoc/dashboard-categorical-filter',
files=payload,
verify=scraper.verify
)
scraper.lastActionTime = time.time()
if r.status_code >= 400:
raise requests.exceptions.RequestException(r.content)
resp = r.json()
errors = [
res['commandReturn']['commandValidationPresModel']['errorMessage']
for res in resp['vqlCmdResponse']['cmdResultList']
if not res['commandReturn'].get('commandValidationPresModel', {}).get('valid', True)
]
if errors:
wb._scraper.logger.error(str(", ".join(errors)))
raise tableauscraper.api.APIResponseException(", ".join(errors))
wb.updateFullData(resp)
return tableauscraper.dashboard.getWorksheetsCmdResponse(scraper, resp)
except ValueError as e:
scraper.logger.error(str(e))
return tableauscraper.TableauWorkbook(
scraper=scraper, originalData={}, originalInfo={}, data=[]
)
except tableauscraper.api.APIResponseException as e:
wb._scraper.logger.error(str(e))
return tableauscraper.TableauWorkbook(
scraper=scraper, originalData={}, originalInfo={}, data=[]
)