-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
489 lines (392 loc) · 17.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import logging
import os
import os.path as osp
from tqdm import tqdm
import numpy as np
import torch
from torch_geometric.data import Data, Batch
from torch_scatter import segment_coo, segment_csr
# From https://github.com/Open-Catalyst-Project
def get_pbc_distances(
pos,
edge_index,
cell,
cell_offsets,
neighbors,
return_offsets: bool = False,
return_distance_vec: bool = False,
):
row, col = edge_index
distance_vectors = pos[row] - pos[col]
# correct for pbc
neighbors = neighbors.to(cell.device)
cell = torch.repeat_interleave(cell, neighbors, dim=0)
offsets = cell_offsets.float().view(-1, 1, 3).bmm(cell.float()).view(-1, 3)
distance_vectors += offsets
# compute distances
distances = distance_vectors.norm(dim=-1)
# redundancy: remove zero distances
nonzero_idx = torch.arange(len(distances), device=distances.device)[
distances != 0
]
edge_index = edge_index[:, nonzero_idx]
distances = distances[nonzero_idx]
out = {
"edge_index": edge_index,
"distances": distances,
}
if return_distance_vec:
out["distance_vec"] = distance_vectors[nonzero_idx]
if return_offsets:
out["offsets"] = offsets[nonzero_idx]
return out
# From
def radius_graph_pbc(
data,
radius,
max_num_neighbors_threshold,
enforce_max_neighbors_strictly: bool = False,
pbc=[True, True, True],
):
device = data.pos.device
batch_size = len(data.natoms)
if hasattr(data, "pbc"):
data.pbc = torch.atleast_2d(data.pbc)
for i in range(3):
if not torch.any(data.pbc[:, i]).item():
pbc[i] = False
elif torch.all(data.pbc[:, i]).item():
pbc[i] = True
else:
raise RuntimeError(
"Different structures in the batch have different PBC configurations. This is not currently supported."
)
# position of the atoms
atom_pos = data.pos
# Before computing the pairwise distances between atoms, first create a list of atom indices to compare for the entire batch
num_atoms_per_image = data.natoms
num_atoms_per_image_sqr = (num_atoms_per_image**2).long()
# index offset between images
index_offset = (
torch.cumsum(num_atoms_per_image, dim=0) - num_atoms_per_image
)
index_offset_expand = torch.repeat_interleave(
index_offset, num_atoms_per_image_sqr
)
num_atoms_per_image_expand = torch.repeat_interleave(
num_atoms_per_image, num_atoms_per_image_sqr
)
# Compute a tensor containing sequences of numbers that range from 0 to num_atoms_per_image_sqr for each image
# that is used to compute indices for the pairs of atoms. This is a very convoluted way to implement
# the following (but 10x faster since it removes the for loop)
# for batch_idx in range(batch_size):
# batch_count = torch.cat([batch_count, torch.arange(num_atoms_per_image_sqr[batch_idx], device=device)], dim=0)
num_atom_pairs = torch.sum(num_atoms_per_image_sqr)
index_sqr_offset = (
torch.cumsum(num_atoms_per_image_sqr, dim=0) - num_atoms_per_image_sqr
)
index_sqr_offset = torch.repeat_interleave(
index_sqr_offset, num_atoms_per_image_sqr
)
atom_count_sqr = (
torch.arange(num_atom_pairs, device=device) - index_sqr_offset
)
# Compute the indices for the pairs of atoms (using division and mod)
# If the systems get too large this apporach could run into numerical precision issues
index1 = (
torch.div(
atom_count_sqr, num_atoms_per_image_expand, rounding_mode="floor"
)
) + index_offset_expand
index2 = (
atom_count_sqr % num_atoms_per_image_expand
) + index_offset_expand
# Get the positions for each atom
pos1 = torch.index_select(atom_pos, 0, index1)
pos2 = torch.index_select(atom_pos, 0, index2)
# Calculate required number of unit cells in each direction.
# Smallest distance between planes separated by a1 is
# 1 / ||(a2 x a3) / V||_2, since a2 x a3 is the area of the plane.
# Note that the unit cell volume V = a1 * (a2 x a3) and that
# (a2 x a3) / V is also the reciprocal primitive vector
# (crystallographer's definition).
cross_a2a3 = torch.cross(data.cell[:, 1], data.cell[:, 2], dim=-1)
cell_vol = torch.sum(data.cell[:, 0] * cross_a2a3, dim=-1, keepdim=True)
if pbc[0]:
inv_min_dist_a1 = torch.norm(cross_a2a3 / cell_vol, p=2, dim=-1)
rep_a1 = torch.ceil(radius * inv_min_dist_a1)
else:
rep_a1 = data.cell.new_zeros(1)
if pbc[1]:
cross_a3a1 = torch.cross(data.cell[:, 2], data.cell[:, 0], dim=-1)
inv_min_dist_a2 = torch.norm(cross_a3a1 / cell_vol, p=2, dim=-1)
rep_a2 = torch.ceil(radius * inv_min_dist_a2)
else:
rep_a2 = data.cell.new_zeros(1)
if pbc[2]:
cross_a1a2 = torch.cross(data.cell[:, 0], data.cell[:, 1], dim=-1)
inv_min_dist_a3 = torch.norm(cross_a1a2 / cell_vol, p=2, dim=-1)
rep_a3 = torch.ceil(radius * inv_min_dist_a3)
else:
rep_a3 = data.cell.new_zeros(1)
# Take the max over all images for uniformity. This is essentially padding.
# Note that this can significantly increase the number of computed distances
# if the required repetitions are very different between images
# (which they usually are). Changing this to sparse (scatter) operations
# might be worth the effort if this function becomes a bottleneck.
max_rep = [rep_a1.max(), rep_a2.max(), rep_a3.max()]
# Tensor of unit cells
cells_per_dim = [
torch.arange(-rep, rep + 1, device=device, dtype=torch.float)
for rep in max_rep
]
unit_cell = torch.cartesian_prod(*cells_per_dim)
num_cells = len(unit_cell)
unit_cell_per_atom = unit_cell.view(1, num_cells, 3).repeat(
len(index2), 1, 1
)
unit_cell = torch.transpose(unit_cell, 0, 1)
unit_cell_batch = unit_cell.view(1, 3, num_cells).expand(
batch_size, -1, -1
)
# Compute the x, y, z positional offsets for each cell in each image
data_cell = torch.transpose(data.cell, 1, 2)
pbc_offsets = torch.bmm(data_cell, unit_cell_batch)
pbc_offsets_per_atom = torch.repeat_interleave(
pbc_offsets, num_atoms_per_image_sqr, dim=0
)
# Expand the positions and indices for the 9 cells
pos1 = pos1.view(-1, 3, 1).expand(-1, -1, num_cells)
pos2 = pos2.view(-1, 3, 1).expand(-1, -1, num_cells)
index1 = index1.view(-1, 1).repeat(1, num_cells).view(-1)
index2 = index2.view(-1, 1).repeat(1, num_cells).view(-1)
# Add the PBC offsets for the second atom
pos2 = pos2 + pbc_offsets_per_atom
# Compute the squared distance between atoms
direction = pos1 - pos2
atom_distance_sqr = torch.sum((direction) ** 2, dim=1)
direction = direction.permute(0, 2, 1).reshape(-1, 3)
atom_distance_sqr = atom_distance_sqr.view(-1)
# Remove pairs that are too far apart
mask_within_radius = torch.le(atom_distance_sqr, radius * radius)
# Remove pairs with the same atoms (distance = 0.0)
mask_not_same = torch.gt(atom_distance_sqr, 0.0001)
mask = torch.logical_and(mask_within_radius, mask_not_same)
index1 = torch.masked_select(index1, mask)
index2 = torch.masked_select(index2, mask)
unit_cell = torch.masked_select(
unit_cell_per_atom.view(-1, 3), mask.view(-1, 1).expand(-1, 3)
)
unit_cell = unit_cell.view(-1, 3)
atom_distance_sqr = torch.masked_select(atom_distance_sqr, mask)
direction = torch.masked_select(direction, mask.view(-1, 1).expand(-1, 3)).view(-1, 3)
if max_num_neighbors_threshold is not None:
mask_num_neighbors, num_neighbors_image = get_max_neighbors_mask(
natoms=data.natoms,
index=index1,
atom_distance=atom_distance_sqr,
max_num_neighbors_threshold=max_num_neighbors_threshold,
enforce_max_strictly=enforce_max_neighbors_strictly,
)
if not torch.all(mask_num_neighbors):
# Mask out the atoms to ensure each atom has at most max_num_neighbors_threshold neighbors
index1 = torch.masked_select(index1, mask_num_neighbors)
index2 = torch.masked_select(index2, mask_num_neighbors)
atom_distance_sqr = torch.masked_select(atom_distance_sqr, mask_num_neighbors)
direction = torch.masked_select(direction, mask_num_neighbors.view(-1, 1).expand(-1, 3)).view(-1, 3)
unit_cell = torch.masked_select(
unit_cell.view(-1, 3), mask_num_neighbors.view(-1, 1).expand(-1, 3)
)
unit_cell = unit_cell.view(-1, 3)
edge_index = torch.stack((index2, index1))
return edge_index, unit_cell, torch.sqrt(atom_distance_sqr), direction
def get_max_neighbors_mask(
natoms,
index,
atom_distance,
max_num_neighbors_threshold,
degeneracy_tolerance: float = 0.01,
enforce_max_strictly: bool = False,
):
"""
Give a mask that filters out edges so that each atom has at most
`max_num_neighbors_threshold` neighbors.
Assumes that `index` is sorted.
Enforcing the max strictly can force the arbitrary choice between
degenerate edges. This can lead to undesired behaviors; for
example, bulk formation energies which are not invariant to
unit cell choice.
A degeneracy tolerance can help prevent sudden changes in edge
existence from small changes in atom position, for example,
rounding errors, slab relaxation, temperature, etc.
"""
device = natoms.device
num_atoms = natoms.sum()
# Get number of neighbors
# segment_coo assumes sorted index
ones = index.new_ones(1).expand_as(index)
num_neighbors = segment_coo(ones, index, dim_size=num_atoms)
max_num_neighbors = num_neighbors.max()
num_neighbors_thresholded = num_neighbors.clamp(
max=max_num_neighbors_threshold
)
# Get number of (thresholded) neighbors per image
image_indptr = torch.zeros(
natoms.shape[0] + 1, device=device, dtype=torch.long
)
image_indptr[1:] = torch.cumsum(natoms, dim=0)
num_neighbors_image = segment_csr(num_neighbors_thresholded, image_indptr)
# If max_num_neighbors is below the threshold, return early
if (
max_num_neighbors <= max_num_neighbors_threshold
or max_num_neighbors_threshold <= 0
):
mask_num_neighbors = torch.tensor(
[True], dtype=bool, device=device
).expand_as(index)
return mask_num_neighbors, num_neighbors_image
# Create a tensor of size [num_atoms, max_num_neighbors] to sort the distances of the neighbors.
# Fill with infinity so we can easily remove unused distances later.
distance_sort = torch.full(
[num_atoms * max_num_neighbors], np.inf, device=device
)
# Create an index map to map distances from atom_distance to distance_sort
# index_sort_map assumes index to be sorted
index_neighbor_offset = torch.cumsum(num_neighbors, dim=0) - num_neighbors
index_neighbor_offset_expand = torch.repeat_interleave(
index_neighbor_offset, num_neighbors
)
index_sort_map = (
index * max_num_neighbors
+ torch.arange(len(index), device=device)
- index_neighbor_offset_expand
)
distance_sort.index_copy_(0, index_sort_map, atom_distance)
distance_sort = distance_sort.view(num_atoms, max_num_neighbors)
# Sort neighboring atoms based on distance
distance_sort, index_sort = torch.sort(distance_sort, dim=1)
# Select the max_num_neighbors_threshold neighbors that are closest
if enforce_max_strictly:
distance_sort = distance_sort[:, :max_num_neighbors_threshold]
index_sort = index_sort[:, :max_num_neighbors_threshold]
max_num_included = max_num_neighbors_threshold
else:
effective_cutoff = (
distance_sort[:, max_num_neighbors_threshold]
+ degeneracy_tolerance
)
is_included = torch.le(distance_sort.T, effective_cutoff)
# Set all undesired edges to infinite length to be removed later
distance_sort[~is_included.T] = np.inf
# Subselect tensors for efficiency
num_included_per_atom = torch.sum(is_included, dim=0)
max_num_included = torch.max(num_included_per_atom)
distance_sort = distance_sort[:, :max_num_included]
index_sort = index_sort[:, :max_num_included]
# Recompute the number of neighbors
num_neighbors_thresholded = num_neighbors.clamp(
max=num_included_per_atom
)
num_neighbors_image = segment_csr(
num_neighbors_thresholded, image_indptr
)
# Offset index_sort so that it indexes into index
index_sort = index_sort + index_neighbor_offset.view(-1, 1).expand(
-1, max_num_included
)
# Remove "unused pairs" with infinite distances
mask_finite = torch.isfinite(distance_sort)
index_sort = torch.masked_select(index_sort, mask_finite)
# At this point index_sort contains the index into index of the
# closest max_num_neighbors_threshold neighbors per atom
# Create a mask to remove all pairs not in index_sort
mask_num_neighbors = torch.zeros(len(index), device=device, dtype=bool)
mask_num_neighbors.index_fill_(0, index_sort, True)
return mask_num_neighbors, num_neighbors_image
def rotate_crystal_to_lattice(lattice_matrix):
"""
Rotate the crystal such that:
- The x-axis aligns with the first lattice vector.
- The y-axis lies in the plane of the first and second lattice vectors.
- The z-axis is the cross product of the new x and y axes.
Parameters:
lattice_matrix: 3x3 matrix with lattice vectors as rows.
Returns:
rotation_matrix: 3x3 rotation matrix.
new_lattice_matrix: 3x3 new lattice matrix.
"""
a1 = lattice_matrix[0]
x_axis = a1 / torch.linalg.norm(a1)
a2 = lattice_matrix[1]
a2_proj = a2 - torch.dot(a2, x_axis) * x_axis
y_axis = a2_proj / torch.linalg.norm(a2_proj)
z_axis = torch.cross(x_axis, y_axis)
rotation_matrix = torch.stack([x_axis, y_axis, z_axis])
new_lattice_matrix = lattice_matrix @ rotation_matrix.T
return rotation_matrix, new_lattice_matrix
def expand_lattice(lattice_vectors, repetitions=2):
lattice_vectors_expanded = []
for i in range(-repetitions, repetitions + 1):
for j in range(-repetitions, repetitions + 1):
for k in range(-repetitions, repetitions + 1):
if i == 0 and j == 0 and k == 0:
continue
lattice_vectors_expanded.append(i * lattice_vectors[0] + j * lattice_vectors[1] + k * lattice_vectors[2])
return torch.stack(lattice_vectors_expanded)
def vector_angle(v1, v2):
cos_theta = torch.dot(v1, v2) / (torch.norm(v1) * torch.norm(v2))
return torch.abs(torch.acos(cos_theta))
def find_right_hand_system(vectors):
if torch.dot(torch.cross(vectors[0], vectors[1]), vectors[2]) < 0:
vectors = -vectors
return vectors
def optmize_lattice(lattice_vectors):
expanded_lattice = expand_lattice(lattice_vectors)
origin = torch.zeros(3)
distances = torch.norm(expanded_lattice - origin, dim=1)
sorted_indices = torch.argsort(distances)
closest_vectors = expanded_lattice[sorted_indices]
v1 = closest_vectors[0]
for i,v in enumerate(closest_vectors[1:]):
if not torch.isclose(torch.norm(torch.cross(v1, v)),torch.tensor(0.), atol=1e-3):
angle = vector_angle(v1, v)
if angle > np.pi / 2:
v2 = -v
else:
v2 = v
break
for v in closest_vectors[i:]:
if not torch.isclose(torch.dot(torch.cross(v1, v2), v),torch.tensor(0.), atol=1e-3):
angle2 = vector_angle(v1, v)
if angle2 > np.pi / 2:
v3 = -v
else:
v3 = v
break
new_lattice = torch.stack([v1, v2, v3])
new_lattice = find_right_hand_system(new_lattice)
rotation_matrix, new_lattice = rotate_crystal_to_lattice(new_lattice)
return new_lattice, rotation_matrix
def compute_knn(max_neigh, radius, path, refcodes):
print(max_neigh)
final_root = os.path.join(path, "data_"+str(max_neigh)+"_"+str(radius)+"/")
print(final_root)
if os.path.exists(final_root) and os.path.isdir(final_root):
logging.info("Already computed PBC for knn "+str(max_neigh) + " and radius "+str(radius))
return final_root
else:
os.makedirs(final_root)
os.makedirs(osp.join(final_root,"data/"))
for split in refcodes:
with open(split, 'r') as file:
file_names = [line.strip() for line in file.readlines()]
for file_name in tqdm(file_names, ncols=100, desc="Computing PBC"):
data = torch.load(osp.join(path,"data/"+file_name+".pt"))
data.pbc = torch.tensor([[True, True, True]])
batch = Batch.from_data_list([data])
edge_index, _, _, cart_vector = radius_graph_pbc(batch, radius, max_neigh)
data.edge_index = edge_index
data.cart_dist = torch.norm(cart_vector, p=2, dim=-1).unsqueeze(-1)
data.cart_dir = torch.nn.functional.normalize(cart_vector, p=2, dim=-1)
torch.save(data, osp.join(final_root,"data/"+file_name+".pt"))
return final_root