-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathmain.py
188 lines (142 loc) · 7.71 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""Implementation of Pointer networks: http://arxiv.org/pdf/1506.03134v1.pdf.
"""
from __future__ import absolute_import, division, print_function
import random
import numpy as np
import tensorflow as tf
from dataset import DataGenerator
from pointer import pointer_decoder
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_integer('batch_size', 32, 'Batch size. ')
flags.DEFINE_integer('max_steps', 10, 'Number of numbers to sort. ')
flags.DEFINE_integer('rnn_size', 32, 'RNN size. ')
class PointerNetwork(object):
def __init__(self, max_len, input_size, size, num_layers, max_gradient_norm, batch_size, learning_rate,
learning_rate_decay_factor):
"""Create the network. A simplified network that handles only sorting.
Args:
max_len: maximum length of the model.
input_size: size of the inputs data.
size: number of units in each layer of the model.
num_layers: number of layers in the model.
max_gradient_norm: gradients will be clipped to maximally this norm.
batch_size: the size of the batches used during training;
the model construction is independent of batch_size, so it can be
changed after initialization if this is convenient, e.g., for decoding.
learning_rate: learning rate to start with.
learning_rate_decay_factor: decay learning rate by this much when needed.
"""
self.batch_size = batch_size
self.learning_rate = tf.Variable(float(learning_rate), trainable=False)
self.learning_rate_decay_op = self.learning_rate.assign(
self.learning_rate * learning_rate_decay_factor)
self.global_step = tf.Variable(0, trainable=False)
cell = tf.contrib.rnn.GRUCell(size)
if num_layers > 1:
cell = tf.contrib.rnn.MultiRNNCell([single_cell] * num_layers)
self.encoder_inputs = []
self.decoder_inputs = []
self.decoder_targets = []
self.target_weights = []
for i in range(max_len):
self.encoder_inputs.append(tf.placeholder(
tf.float32, [batch_size, input_size], name="EncoderInput%d" % i))
for i in range(max_len + 1):
self.decoder_inputs.append(tf.placeholder(
tf.float32, [batch_size, input_size], name="DecoderInput%d" % i))
self.decoder_targets.append(tf.placeholder(
tf.float32, [batch_size, max_len + 1], name="DecoderTarget%d" % i)) # one hot
self.target_weights.append(tf.placeholder(
tf.float32, [batch_size, 1], name="TargetWeight%d" % i))
# Encoder
# Need for attention
encoder_outputs, final_state = tf.contrib.rnn.static_rnn(cell, self.encoder_inputs, dtype=tf.float32)
# Need a dummy output to point on it. End of decoding.
encoder_outputs = [tf.zeros([FLAGS.batch_size, FLAGS.rnn_size])] + encoder_outputs
# First calculate a concatenation of encoder outputs to put attention on.
top_states = [tf.reshape(e, [-1, 1, cell.output_size])
for e in encoder_outputs]
attention_states = tf.concat(axis=1, values=top_states)
with tf.variable_scope("decoder"):
outputs, states, _ = pointer_decoder(
self.decoder_inputs, final_state, attention_states, cell)
with tf.variable_scope("decoder", reuse=True):
predictions, _, inps = pointer_decoder(
self.decoder_inputs, final_state, attention_states, cell, feed_prev=True)
self.predictions = predictions
self.outputs = outputs
self.inps = inps
# move code below to a separate function as in TF examples
def create_feed_dict(self, encoder_input_data, decoder_input_data, decoder_target_data):
feed_dict = {}
for placeholder, data in zip(self.encoder_inputs, encoder_input_data):
feed_dict[placeholder] = data
for placeholder, data in zip(self.decoder_inputs, decoder_input_data):
feed_dict[placeholder] = data
for placeholder, data in zip(self.decoder_targets, decoder_target_data):
feed_dict[placeholder] = data
for placeholder in self.target_weights:
feed_dict[placeholder] = np.ones([self.batch_size, 1])
return feed_dict
def step(self):
loss = 0.0
for output, target, weight in zip(self.outputs, self.decoder_targets, self.target_weights):
loss += tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=target) * weight
loss = tf.reduce_mean(loss)
test_loss = 0.0
for output, target, weight in zip(self.predictions, self.decoder_targets, self.target_weights):
test_loss += tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=target) * weight
test_loss = tf.reduce_mean(test_loss)
optimizer = tf.train.AdamOptimizer()
train_op = optimizer.minimize(loss)
train_loss_value = 0.0
test_loss_value = 0.0
correct_order = 0
all_order = 0
with tf.Session() as sess:
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter("/tmp/pointer_logs", sess.graph)
init = tf.global_variables_initializer()
sess.run(init)
for i in range(100000):
encoder_input_data, decoder_input_data, targets_data = dataset.next_batch(
FLAGS.batch_size, FLAGS.max_steps)
# Train
feed_dict = self.create_feed_dict(
encoder_input_data, decoder_input_data, targets_data)
d_x, l = sess.run([loss, train_op], feed_dict=feed_dict)
train_loss_value = 0.9 * train_loss_value + 0.1 * d_x
if i % 100 == 0:
print('Step: %d' % i)
print("Train: ", train_loss_value)
encoder_input_data, decoder_input_data, targets_data = dataset.next_batch(
FLAGS.batch_size, FLAGS.max_steps, train_mode=False)
# Test
feed_dict = self.create_feed_dict(
encoder_input_data, decoder_input_data, targets_data)
inps_ = sess.run(self.inps, feed_dict=feed_dict)
predictions = sess.run(self.predictions, feed_dict=feed_dict)
test_loss_value = 0.9 * test_loss_value + 0.1 * sess.run(test_loss, feed_dict=feed_dict)
if i % 100 == 0:
print("Test: ", test_loss_value)
predictions_order = np.concatenate([np.expand_dims(prediction, 0) for prediction in predictions])
predictions_order = np.argmax(predictions_order, 2).transpose(1, 0)[:, 0:FLAGS.max_steps]
input_order = np.concatenate(
[np.expand_dims(encoder_input_data_, 0) for encoder_input_data_ in encoder_input_data])
input_order = np.argsort(input_order, 0).squeeze().transpose(1, 0) + 1
correct_order += np.sum(np.all(predictions_order == input_order,
axis=1))
all_order += FLAGS.batch_size
if i % 100 == 0:
print('Correct order / All order: %f' % (correct_order / all_order))
correct_order = 0
all_order = 0
# print(encoder_input_data, decoder_input_data, targets_data)
# print(inps_)
if __name__ == "__main__":
# TODO: replace other with params
pointer_network = PointerNetwork(FLAGS.max_steps, 1, FLAGS.rnn_size,
1, 5, FLAGS.batch_size, 1e-2, 0.95)
dataset = DataGenerator()
pointer_network.step()