-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMDP.py
194 lines (164 loc) · 8.02 KB
/
MDP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# -*- coding: utf-8 -*-
from util import *
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModel, AdamW
import numpy as np
from pydantic import BaseModel
import torch
from torch import nn
from datasets import load_dataset
import tqdm
import string
import math
import time
import dataloader
import os
import random
import copy
import torch.nn.functional as F
import json
from sentence_transformers import SentenceTransformer, util as st_util
class SurrogateModel(nn.Module):
def __init__(self, pretrained_model='bert-base-uncased', num_labels=2):
super(SurrogateModel, self).__init__()
self.model = AutoModelForSequenceClassification.from_pretrained(pretrained_model, num_labels=num_labels)
def forward(self, input_ids, attention_mask):
return self.model(input_ids=input_ids, attention_mask=attention_mask)
class RLAgent:
def __init__(self, surrogate_model, tokenizer, reward_function, action_space):
self.surrogate_model = surrogate_model
self.tokenizer = tokenizer
self.reward_function = reward_function
self.action_space = action_space
self.policy_network = PolicyNetwork(input_dim=768, output_dim=len(action_space)) # Assume input_dim matches BERT hidden size
self.optimizer = AdamW(self.policy_network.parameters(), lr=1e-3)
def trigger_generation(self, document, max_trigger_length=5):
trigger = []
for _ in range(max_trigger_length):
input_text = " ".join(trigger) + " [MASK]"
inputs = self.tokenizer(input_text, return_tensors='pt').to('cuda')
outputs = self.surrogate_model(**inputs)
logits = outputs.logits
next_word_id = torch.argmax(logits, dim=-1).item()
next_word = self.tokenizer.decode(next_word_id)
trigger.append(next_word)
return " ".join(trigger)
def word_substitution(self, document, synonyms, max_substitutions=5):
words = document.split()
for _ in range(max_substitutions):
word_to_replace = random.choice(words)
if word_to_replace in synonyms:
synonym = random.choice(synonyms[word_to_replace])
words = [synonym if word == word_to_replace else word for word in words]
return " ".join(words)
def calculate_reward(self, original_doc, perturbed_doc, query):
original_score = self.surrogate_model(self.tokenizer(query + original_doc, return_tensors='pt').to('cuda')).logits
perturbed_score = self.surrogate_model(self.tokenizer(query + perturbed_doc, return_tensors='pt').to('cuda')).logits
semantic_sim = self.semantic_similarity(original_doc, perturbed_doc)
return self.reward_function(original_score, perturbed_score) + semantic_sim
def semantic_similarity(self, doc1, doc2):
# Assuming the sentence transformer model is loaded
embed1 = sentence_transformer.encode(doc1, convert_to_tensor=True)
embed2 = sentence_transformer.encode(doc2, convert_to_tensor=True)
similarity = st_util.pytorch_cos_sim(embed1, embed2)
return similarity.item()
def update_policy(self, rewards, log_probs, gamma=0.99):
returns = self.compute_returns(rewards, gamma)
policy_loss = []
for log_prob, R in zip(log_probs, returns):
policy_loss.append(-log_prob * R)
self.optimizer.zero_grad()
policy_loss = torch.cat(policy_loss).sum()
policy_loss.backward()
self.optimizer.step()
def compute_returns(self, rewards, gamma):
R = 0
returns = []
for r in reversed(rewards):
R = r + gamma * R
returns.insert(0, R)
return returns
class PolicyNetwork(nn.Module):
def __init__(self, input_dim, output_dim):
super(PolicyNetwork, self).__init__()
self.fc = nn.Linear(input_dim, output_dim)
def forward(self, x):
return torch.softmax(self.fc(x), dim=-1)
def reward_function(original_score, perturbed_score):
# Reward is a combination of score difference and semantic similarity
return torch.max(torch.tensor(0.0), original_score - perturbed_score)
def main():
# Parameters
dataset_path = 'path_to_dataset'
num_labels = 2
target_model_path = 'path_to_target_model'
output_dir = 'output_dir'
output_json = 'output.json'
sim_score_threshold = 0.7
synonym_num = 50
perturb_ratio = 0.4
discriminator_checkpoint = 'checkpoint'
mode = 'train'
# Load models and tokenizers
tokenizer = AutoTokenizer.from_pretrained(target_model_path)
surrogate_model = SurrogateModel(pretrained_model=target_model_path, num_labels=num_labels).to('cuda')
sentence_transformer = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') # Load USE or similar
# Load data
dataset = load_dataset(dataset_path)
queries = dataset['train']['queries']
documents = dataset['train']['documents']
# Initialize RL agent
rl_agent = RLAgent(surrogate_model, tokenizer, reward_function, action_space=['trigger', 'substitution'])
# Train or evaluate model
if mode == 'train':
# Train surrogate model
optimizer = AdamW(surrogate_model.parameters(), lr=3e-5)
for epoch in range(3):
surrogate_model.train()
for query, document in zip(queries, documents):
inputs = tokenizer(query + document, return_tensors='pt').to('cuda')
labels = torch.tensor([1 if doc in relevant_docs else 0 for doc in documents]).to('cuda')
outputs = surrogate_model(**inputs, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()
# Train RL agent
num_episodes = 1000
max_steps = 10 # Adjust based on problem complexity
for episode in range(num_episodes):
total_reward = 0
log_probs = []
rewards = []
state = random.choice(documents) # Initial document
query = random.choice(queries) # Randomly choose a query
for step in range(max_steps):
action_probs = rl_agent.policy_network(torch.FloatTensor(sentence_transformer.encode(state, convert_to_tensor=True)).to('cuda'))
action_dist = torch.distributions.Categorical(action_probs)
action = action_dist.sample()
log_prob = action_dist.log_prob(action)
log_probs.append(log_prob)
if action.item() == 0:
perturbed_doc = rl_agent.trigger_generation(state)
else:
perturbed_doc = rl_agent.word_substitution(state, synonyms={'word': ['synonym1', 'synonym2']})
reward = rl_agent.calculate_reward(state, perturbed_doc, query)
rewards.append(reward)
total_reward += reward
state = perturbed_doc
rl_agent.update_policy(rewards, log_probs)
if episode % 100 == 0:
print(f"Episode {episode}, Total Reward: {total_reward}")
# Save trained model
torch.save(rl_agent.policy_network.state_dict(), os.path.join(output_dir, 'policy_network.pth'))
elif mode == 'eval':
# Evaluate RL agent
results = []
for query, document in zip(queries, documents):
trigger = rl_agent.trigger_generation(document)
perturbed_doc = rl_agent.word_substitution(document, synonyms={'word': ['synonym1', 'synonym2']})
reward = rl_agent.calculate_reward(document, perturbed_doc, query)
results.append({'query': query, 'document': document, 'trigger': trigger, 'perturbed_doc': perturbed_doc, 'reward': reward})
# Save results
with open(os.path.join(output_dir, output_json), 'w') as f:
json.dump(results, f)
if __name__ == "__main__":
main()