-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnoisy_train.py
382 lines (314 loc) · 17.5 KB
/
noisy_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
import argparse
import glob
import logging
import os
import random
import pickle
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset)
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from transformers import (WEIGHTS_NAME,
BertConfig,
BertTokenizer
)
from transformers import AdamW, get_linear_schedule_with_warmup
from dataset_utils import (output_modes, processors)
from modeling import Ranking_BERT_Train
from marcodoc.dataset import MSMARCONoisyDocDataset, get_collate_function
from utils import generate_rank, eval_results
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
'bert': (BertConfig, Ranking_BERT_Train, BertTokenizer),
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def save_model(model, output_dir, save_name, args):
save_dir = os.path.join(output_dir, save_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(save_dir)
torch.save(args, os.path.join(save_dir, 'training_args.bin'))
def train(args, model):
""" Train the model """
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
# perturbed training set
train_dataset = MSMARCONoisyDocDataset("train", args.msmarco_dir, args.perturbed_collection_memmap_dir,
args.query_tokenize_dir, args.bert_tokenizer_path,
args.max_query_length, args.max_doc_length)
# NOTE: Must Sequential! Pos, Neg, Pos, Neg, ...
train_sampler = SequentialSampler(train_dataset)
collate_fn = get_collate_function(mode="train")
train_dataloader = DataLoader(train_dataset, sampler=train_sampler,
batch_size=args.train_batch_size, num_workers=args.data_num_workers,
collate_fn=collate_fn)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataset) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataset) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch")
set_seed(args)
for epoch_idx, _ in enumerate(train_iterator):
epoch_iterator = tqdm(train_dataloader, desc="Iteration")
for step, (batch, _, _) in enumerate(epoch_iterator):
batch = {k: v.to(args.device) for k, v in batch.items()}
model.train()
outputs = model(**batch)
loss = outputs[0] # model outputs are always t
# uple in pytorch-transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.evaluate_during_training and (global_step % args.training_eval_steps == 0):
mrr = evaluate(args, model, mode="dev", prefix="step_{}".format(global_step))
tb_writer.add_scalar('dev/MRR@100', mrr, global_step)
if args.logging_steps > 0 and global_step % args.logging_steps == 0:
tb_writer.add_scalar('lr', scheduler.get_last_lr()[0], global_step)
cur_loss = (tr_loss - logging_loss)/args.logging_steps
tb_writer.add_scalar('train/loss', cur_loss, global_step)
logging_loss = tr_loss
if args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
save_model(model, args.model_save_dir, 'ckpt-{}'.format(global_step), args)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, mode, prefix):
eval_output_dir = args.eval_save_dir
if not os.path.exists(eval_output_dir):
os.makedirs(eval_output_dir)
eval_dataset = MSMARCONoisyDocDataset(mode, args.msmarco_dir, args.perturbed_collection_memmap_dir,
args.query_tokenize_dir, args.bert_tokenizer_path,
args.max_query_length, args.max_doc_length, small_test=True)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
collate_fn = get_collate_function(mode=mode)
eval_dataloader = DataLoader(eval_dataset, batch_size=args.eval_batch_size,
num_workers=args.data_evaluate_num_workers, collate_fn=collate_fn)
# multi-gpu eval
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
output_file_path = f"{eval_output_dir}/{prefix}.{mode}.score.tsv"
# i = 0
with open(output_file_path, 'w') as outputfile:
for batch, qids, docids in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
with torch.no_grad():
batch = {k: v.to(args.device) for k, v in batch.items()}
outputs = model(**batch)
# print(outputs)
# print(outputs.shape)
scores = outputs.detach().cpu().numpy()
# print(qids, docids, scores)
assert len(qids) == len(docids) == len(scores)
for qid, docid, score in zip(qids, docids, scores):
outputfile.write(f"{qid}\t{docid}\t{score[0]}\n")
rank_output = f"{eval_output_dir}/{prefix}.{mode}.rank.tsv"
generate_rank(output_file_path, rank_output)
if mode == "dev":
mrr = eval_results(rank_output)
return mrr
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ")
parser.add_argument("--task_name", default=None, type=str, required=True,
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
# Other parameters
parser.add_argument("--msmarco_dir", type=str, default="/data/msmarco_doc")
parser.add_argument("--perturbed_collection_memmap_dir", type=str, default="./data/collection_memmap")
parser.add_argument("--query_tokenize_dir", type=str, default="./data/tokenize")
parser.add_argument("--bert_tokenizer_path", type=str, default="./data/tokenize")
parser.add_argument("--data_num_workers", default=0, type=int)
parser.add_argument("--data_evaluate_num_workers", default=0, type=int)
parser.add_argument("--training_eval_steps", default=20000, type=int)
parser.add_argument('--net_type', default='bert', type=str,
help='networktype: bert, textcnn, and so on')
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--max_query_length", default=64, type=int,
help="")
parser.add_argument("--max_doc_length", default=445, type=int,
help="The maximum document length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Rul evaluation during training at each logging step.")
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=2,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=3e-6, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.01, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=1.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=10000, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--logging_steps', type=int, default=30000,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=100000,
help="Save checkpoint every X updates steps.")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument("--similarity_threshold", default=0.9, type=float,
help="The similarity constraint to be considered as synonym.")
parser.add_argument("--perturbation_constraint", default=100, type=int,
help="The maximum size of perturbation set of each word")
parser.add_argument("--eval_ckpt", type=int, default=None, help='For evaluation')
parser.add_argument("--eval_save_dir", type=str, default='')
args = parser.parse_args()
args.model_save_dir = f"{args.output_dir}/"
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# Setup CUDA, GPU & distributed training
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
args.device = device
# Setup logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger.warning("Process device: %s, n_gpu: %s,",
device, args.n_gpu)
# Set seed
set_seed(args)
# Prepare task
args.task_name = args.task_name.lower()
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
args.output_mode = output_modes[args.task_name]
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path)
if args.net_type == 'bert':
model = model_class.from_pretrained(args.model_name_or_path, config=config)
# Distributed and parallel training
model.to(args.device)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
global_step, tr_loss = train(args, model)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train:
# Create output directory if needed
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if not os.path.exists(args.model_save_dir):
os.makedirs(args.model_save_dir)
logger.info("Saving model checkpoint to %s", args.model_save_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model
if args.net_type == 'bert':
model_to_save.save_pretrained(args.model_save_dir)
else:
torch.save({'state_dict': model.state_dict()}, os.path.join(args.model_save_dir, '/checkpoint.pth.tar'))
tokenizer.save_pretrained(args.model_save_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.model_save_dir, 'training_args.bin'))
if args.net_type == 'bert':
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.model_save_dir)
tokenizer = tokenizer_class.from_pretrained(args.model_save_dir)
model.to(args.device)
results = {}
if args.do_eval:
assert args.eval_ckpt is not None
result = evaluate(args, model, args.task, prefix=f"ckpt-{args.eval_ckpt}")
print(result)
return results
if __name__ == "__main__":
main()