-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path595runlisting.txt
865 lines (742 loc) · 27.3 KB
/
595runlisting.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
ian@ian-HP-Stream-Laptop-11-y0XX:~$ mkdir 595gz
ian@ian-HP-Stream-Laptop-11-y0XX:~$ cd 595gz
ian@ian-HP-Stream-Laptop-11-y0XX:~/595gz$ ls
ian@ian-HP-Stream-Laptop-11-y0XX:~/595gz$ wget http://calgo.acm.org/595.gz
--2021-11-24 07:59:56-- http://calgo.acm.org/595.gz
Resolving calgo.acm.org (calgo.acm.org)... 66.198.246.118
Connecting to calgo.acm.org (calgo.acm.org)|66.198.246.118|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 5917 (5.8K) [application/x-gzip]
Saving to: '595.gz’
595.gz 100%[===================>] 5.78K --.-KB/s in 0s
2021-11-24 08:00:00 (61.6 MB/s) - '595.gz’ saved [5917/5917]
ian@ian-HP-Stream-Laptop-11-y0XX:~/595gz$ gzip 595.gz
gzip: 595.gz already has .gz suffix -- unchanged
ian@ian-HP-Stream-Laptop-11-y0XX:~/595gz$ gzip 595.gz -d
ian@ian-HP-Stream-Laptop-11-y0XX:~/595gz$ cp 595 595.f
ian@ian-HP-Stream-Laptop-11-y0XX:~/595gz$ gfortran 595.f -std=legacy -c
595.f:616:5:
616 | 6
| 1
Error: Statement label without statement at (1)
595.f:617:5:
617 | 0 3 5 8 11 13 16
| 1
Warning: Zero is not a valid statement label at (1)
595.f:617:10:
617 | 0 3 5 8 11 13 16
| 1
Error: Invalid character in name at (1)
595.f:618:10:
618 | 3 5 6 6 3 6 1 4 5 1
| 1
Error: Invalid character in name at (1)
595.f:619:10:
619 | 2 2 3 4 2 5
| 1
Error: Invalid character in name at (1)
ian@ian-HP-Stream-Laptop-11-y0XX:~/595gz$ gfortran 595.f -std=legacy -c
ian@ian-HP-Stream-Laptop-11-y0XX:~/595gz$ gfortran 595.f -std=legacy -o 595run
ian@ian-HP-Stream-Laptop-11-y0XX:~/595gz$ ./595run
.01
At line 29 of file 595.f (unit = 5, file = 'stdin')
Fortran runtime error: Bad value during integer read
Error termination. Backtrace:
#0 0x7f503d7b6d5a
#1 0x7f503d7b7869
#2 0x7f503d7b854f
#3 0x7f503d9f8e20
#4 0x7f503d9fd5b4
#5 0x7f503d9fea2b
#6 0x564f8e5fabfb
#7 0x564f8e5fb8d6
#8 0x7f503d5cb0b2
#9 0x564f8e5f80fd
#10 0xffffffffffffffff
ian@ian-HP-Stream-Laptop-11-y0XX:~/595gz$ ./595run
1
2
3
1
N = 1
PR = 2 0
AR =
0 CIRCUITS 0 BACKTRACKINGS
0 CIRCUITS 0 BACKTRACKINGS
0 CIRCUITS 0 BACKTRACKINGS
0 CIRCUITS 0 BACKTRACKINGS
0 CIRCUITS 0 BACKTRACKINGS
ian@ian-HP-Stream-Laptop-11-y0XX:~/595gz$ ./595run
1
2
3
1
N = 1
PR = 2 0
AR =
0 CIRCUITS 0 BACKTRACKINGS
0 CIRCUITS 0 BACKTRACKINGS
0 CIRCUITS 0 BACKTRACKINGS
0 CIRCUITS 0 BACKTRACKINGS
0 CIRCUITS 0 BACKTRACKINGS
ian@ian-HP-Stream-Laptop-11-y0XX:~/595gz$ cp 595 595.f
ian@ian-HP-Stream-Laptop-11-y0XX:~/595gz$ cp 595 595.f
ian@ian-HP-Stream-Laptop-11-y0XX:~/595gz$ ./595run
001
002
003
1
N = 1
PR = 2 0
AR =
0 CIRCUITS 0 BACKTRACKINGS
0 CIRCUITS 0 BACKTRACKINGS
0 CIRCUITS 0 BACKTRACKINGS
0 CIRCUITS 0 BACKTRACKINGS
0 CIRCUITS 0 BACKTRACKINGS
ian@ian-HP-Stream-Laptop-11-y0XX:~/595gz$ cat 595.f
C ALGORITHM 595, COLLECTED ALGORITHMS FROM ACM.
C ALGORITHM APPEARED IN ACM-TRANS. MATH. SOFTWARE, VOL.9, NO. 1,
C MAR., 1983, P. 131-138.
C SAMPLE DRIVER PROGRAM FOR HC. MAN 10
C MAN 20
C THIS PROGRAM FINDS ONE OR MORE HAMILTONIAN CIRCUITS IN A MAN 30
C DIRECTED GRAPH OF N VERTICES AND M ARCS. MAN 40
C MAN 50
C COMPLETE DETAILS OF THE PARAMETERS MAY BE FOUND IN THE MAN 60
C DOCUMENTATION OF SUBROUTINE HC. MAN 70
C MAN 80
C THE INPUT UNIT NUMBER IS ASSUMED TO BE 5 . MAN 90
C THE OUTPUT UNIT NUMBER IS ASSUMED TO BE 6 . MAN 100
C THE ARRAYS ARE CURRENTLY DIMENSIONED TO ALLOW PROBLEMS FOR MAN 110
C WHICH N .LE. 250 AND M .LE. 2000 . MAN 120
C MAN 130
C THE PROGRAM MAY BE TESTED ON THE FOLLOWING DATA MAN 140
C MAN 150
C N = 6 MAN 160
C PR = 0 3 5 8 11 13 16 MAN 170
C AR = 3 5 6 6 3 6 1 4 5 1 MAN 180
C 2 2 3 4 2 5 MAN 190
C MAN 200
INTEGER PR(251), PC(251), AR(2000), AC(2000), S(250), VR(250), MAN 210
* VC(250), P(250), SUBR(250), RBUS(250), TOR(250) MAN 220
NIN = 5 MAN 230
NOUT = 6 MAN 240
C INPUT DATA MAN 250
READ (NIN,99999) N MAN 260
NP1 = N + 1 MAN 270
READ (NIN,99999) (PR(J),J=1,NP1) MAN 280
M = PR(NP1) MAN 290
READ (NIN,99999) (AR(J),J=1,M) MAN 300
WRITE (NOUT,99998) MAN 310
WRITE (NOUT,99997) N MAN 320
WRITE (NOUT,99996) (PR(J),J=1,NP1) MAN 330
WRITE (NOUT,99995) (AR(J),J=1,M) MAN 340
WRITE (NOUT,99994) MAN 350
C CALL HC AS EXACT PROCEDURE TO FIND (AND PRINT) A SINGLE MAN 360
C HAMILTONIAN CIRCUIT, IF ONE EXISTS. MAN 370
NC = 1 MAN 380
NB = -1 MAN 390
CALL HC(N, PR, AR, NOUT, NC, NB, S, N+1, PR(N+1), PC, AC, VR, VC, MAN 400
* P, SUBR, RBUS, TOR) MAN 410
WRITE (NOUT,99993) NC, NB MAN 420
C CALL HC AS EXACT PROCEDURE TO FIND (AND PRINT) ALL THE MAN 430
C HAMILTONIAN CIRCUITS. MAN 440
NC = -1 MAN 450
NB = -1 MAN 460
CALL HC(N, PR, AR, NOUT, NC, NB, S, N+1, PR(N+1), PC, AC, VR, VC, MAN 470
* P, SUBR, RBUS, TOR) MAN 480
WRITE (NOUT,99993) NC, NB MAN 490
C CALL HC AS HEURISTIC PROCEDURE TO FIND (AND PRINT) A MAN 500
C SINGLE HAMILTONIAN CIRCUIT, IF ONE EXISTS, WITHOUT MAN 510
C PERFORMING MORE THAN 2 BACKTRACKINGS. MAN 520
NC = 1 MAN 530
NB = 2 MAN 540
CALL HC(N, PR, AR, NOUT, NC, NB, S, N+1, PR(N+1), PC, AC, VR, VC, MAN 550
* P, SUBR, RBUS, TOR) MAN 560
WRITE (NOUT,99993) NC, NB MAN 570
C CALL HC AS HEURISTIC PROCEDURE TO FIND (AND PRINT) A MAN 580
C SINGLE HAMILTONIAN CIRCUIT, IF ONE EXISTS, WITHOUT MAN 590
C PERFORMING MORE THAN 4 BACKTRACKINGS. MAN 600
NC = 1 MAN 610
NB = 4 MAN 620
CALL HC(N, PR, AR, NOUT, NC, NB, S, N+1, PR(N+1), PC, AC, VR, VC, MAN 630
* P, SUBR, RBUS, TOR) MAN 640
WRITE (NOUT,99993) NC, NB MAN 650
C CALL HC AS HEURISTIC PROCEDURE TO FIND (WITHOUT PRINTING) MAN 660
C AT MOST 2 HAMILTONIAN CIRCUITS, WITHOUT PERFORMING MORE MAN 670
C THAN 5 BACKTRACKINGS. MAN 680
NC = 2 MAN 690
NB = 5 MAN 700
CALL HC(N, PR, AR, -1, NC, NB, S, N+1, PR(N+1), PC, AC, VR, VC, MAN 710
* P, SUBR, RBUS, TOR) MAN 720
WRITE (NOUT,99993) NC, NB MAN 730
IF (NC.EQ.0) STOP MAN 740
C PRINT THE LAST HAMILTONIAN CIRCUIT FOUND MAN 750
WRITE (NOUT,99992) (S(J),J=1,N) MAN 760
STOP MAN 770
99999 FORMAT (10I5) MAN 780
99998 FORMAT (1H1////////) MAN 790
99997 FORMAT (6H N = , I5) MAN 800
99996 FORMAT (6H PR = , 25I5) MAN 810
99995 FORMAT (6H AR = , 25I5) MAN 820
99994 FORMAT (//////) MAN 830
99993 FORMAT (/I5, 10H CIRCUITS , I5, 14H BACKTRACKINGS///) MAN 840
99992 FORMAT (4X, 4HS = , 25I5) MAN 850
END MAN 860
SUBROUTINE HC(N, PR, AR, KW, NC, NB, S, NP1, M, PC, AC, VR, VC, HC 10
* P, SUBR, RBUS, TOR)
C
C SUBROUTINE TO FIND ONE OR MORE HAMILTONIAN CIRCUITS IN A
C DIRECTED GRAPH OF N VERTICES ( N .GT. 1 ) REPRESENTED
C BY THE INTEGERS 1, 2, ..., N AND M ARCS.
C
C HC IS BASED ON AN ENUMERATIVE ALGORITHM AND CAN BE USED
C EITHER AS AN EXACT PROCEDURE OR AS A HEURISTIC PROCEDURE
C (BY LIMITING THE NUMBER OF BACKTRACKINGS ALLOWED).
C
C ENTRANCE TO HC IS ACHIEVED BY USING THE STATEMENT
C CALL HC(N,PR,AR,KW,NC,NB,S,N+1,PR(N+1),PC,AC,VR,VC,
C * P,SUBR,RBUS,TOR)
C
C THE VALUES OF THE FIRST SIX PARAMETERS MUST BE DEFINED
C BY THE USER PRIOR TO CALLING HC. HC NEEDS 2 ARRAYS ( PR
C AND PC ) OF LENGTH N + 1 , 2 ARRAYS ( AR AND AC )
C OF LENGTH M AND 7 ARRAYS ( S , VR , VC , SUBR ,
C RBUS AND TOR ) OF LENGTH N . THESE ARRAYS MUST BE
C DIMENSIONED BY THE USER IN THE CALLING PROGRAM.
C
C HC CALLS 5 SUBROUTINES: PATH, FUPD, BUPD, IUPD, RARC.
C THESE SUBROUTINES ARE COMPLETELY LOCAL, I.E. THE INFORMA-
C TION THEY NEED IS PASSED THROUGH THE PARAMETER LIST.
C THE WHOLE PACKAGE IS COMPLETELY SELF CONTAINED AND COMMU-
C NICATION TO IT IS ACHIEVED SOLELY THROUGH THE PARAMETER
C LIST OF HC. NO MACHINE DEPENDENT CONSTANTS ARE USED.
C THE PACKAGE IS WRITTEN IN AMERICAN NATIONAL STANDARD
C FORTRAN AND IS ACCEPTED BY THE FTN(EL=A) COMPILER OF THE
C CDC CYBER 76 (OPTION EL=A CHECKS PROGRAM AND SUBROUTINES
C FOR ADHERENCE TO ANSI) AS WELL AS BY THE PFORT VERIFIER.
C THE PACKAGE HAS BEEN TESTED ON A CDC CYBER 76 , ON A CDC
C 6600 , ON AN IBM 370/158 AND ON A DIGITAL VAX 11/780 .
C
C MEANING OF THE INPUT PARAMETERS:
C N = NUMBER OF VERTICES.
C PR(I) = SUM OF THE OUT-DEGREES OF VERTICES 1, ..., I-1
C ( PR(1) = 0 , PR(N+1) = M ).
C AR = ADJACENCY LIST. THE ELEMENTS FROM AR(PR(I)+1) TO
C AR(PR(I+1)) ARE A RECORD CONTAINING,IN ANY ORDER,
C ALL THE VERTICES J SUCH THAT ARC (I,J) EXISTS.
C THE GRAPH SHOULD NOT CONTAIN ARCS STARTING AND
C ENDING AT THE SAME VERTEX.
C KW = UNIT TAPE ON WHICH TO WRITE THE HAMILTONIAN CIR-
C CUITS FOUND, ACCORDING TO FORMAT 20I5 . KW = - 1
C IF NO WRITING IS DESIRED. THE CIRCUITS ARE WRITTEN
C AS ORDERED SEQUENCES OF N VERTICES.
C
C MEANING OF THE INPUT-OUTPUT PARAMETERS:
C NC(INPUT) = UPPER BOUND ON THE NUMBER OF HAMILTONIAN
C CIRCUITS TO BE FOUND ( NC = - 1 IF ALL THE
C HAMILTONIAN CIRCUITS ARE TO BE FOUND).
C NC(OUTPUT) = NUMBER OF HAMILTONIAN CIRCUITS FOUND.
C NB(INPUT) = - 1 IF HC MUST BE EXECUTED AS AN EXACT
C PROCEDURE.
C = UPPER BOUND ON THE NUMBER OF BACKTRACKINGS IF
C HC MUST BE EXECUTED AS A HEURISTIC PROCEDURE.
C NB(OUTPUT) = NUMBER OF BACKTRACKINGS PERFORMED. WHEN HC
C HAS BEEN EXECUTED AS A HEURISTIC PROCEDURE,
C IF NB(OUTPUT) .LT. NB(INPUT) THEN THE
C RESULT OBTAINED IS EXACT.
C
C MEANING OF THE OUTPUT PARAMETER:
C S(I) = I-TH VERTEX IN THE LAST HAMILTONIAN CIRCUIT FOUND.
C
C ON RETURN OF HC N, PR AND KW ARE UNCHANGED, WHILE IN
C AR THE ORDER OF THE ELEMENTS WITHIN EACH RECORD MAY BE
C ALTERED.
C
C MEANING OF THE WORK ARRAYS:
C PC(I) = SUM OF THE IN-DEGREES OF VERTICES 1, ..., I-1
C ( PC(1) = 0 ).
C AC = ADJACENCY LIST (BACKWARD). THE ELEMENTS FROM
C AC(PC(I)+1) TO AC(PC(I+1)) CONTAIN, IN ANY
C ORDER, ALL THE VERTICES J SUCH THAT ARC (J,I)
C EXISTS.
C WHEN AN ARC IS REMOVED FROM THE GRAPH AT THE K-TH LEVEL
C OF THE BRANCH-DECISION TREE, THE CORRESPONDING ELEMENTS
C AR(Q) AND AC(T) ARE SET TO - (K*(N+1) + AR(Q)) AND
C TO - (K*(N+1) + AC(T)) , RESPECTIVELY.
C VR(I) = CURRENT OUT-DEGREE OF VERTEX I .
C VC(I) = CURRENT IN-DEGREE OF VERTEX I .
C SUBR(I) = - (K*(N+1) + J) IF ARC (I,J) WAS IMPLIED AT
C THE K-TH LEVEL OF THE BRANCH-DECISION TREE.
C = 0 OTHERWISE.
C RBUS(I) = - J IF ARC (J,I) IS CURRENTLY IMPLIED.
C = 0 OTHERWISE.
C TOR(K) = Q*(M+1) + T IF THE ARC GOING FROM S(K) TO THE
C ROOT, CORRESPONDING TO AR(Q) AND TO AC(T),
C WAS REMOVED FROM THE GRAPH AT THE K-TH LEVEL
C OF THE BRANCH-DECISION TREE.
C = 0 OTHERWISE.
C P(I) = POINTER FOR THE FORWARD STEP. THE NEXT ARC
C STARTING FROM I TO BE CONSIDERED IN THE
C BRANCH-DECISION TREE IS (I,AR(PR(I)+P(I)).
C
C MEANING OF THE MAIN WORK SIMPLE VARIABLES:
C JR = ROOT. THE HAMILTONIAN CIRCUITS ARE DETERMINED AS
C PATHS STARTING AND ENDING AT JR .
C K = CURRENT LEVEL OF THE BRANCH-DECISION TREE.
C M = NUMBER OF ARCS.
C MP1 = M + 1 (USED FOR PACKING TOR ).
C NP1 = N + 1 (USED FOR PACKING AR , AC AND SUBR )
C
INTEGER PR(NP1), PC(NP1), AR(M), AC(M), S(N), VR(N), VC(N), P(N),
* SUBR(N), RBUS(N), TOR(N)
C
C S T E P 0 (INITIALIZE).
C
NCO = NC
NC = 0
NBO = NB
NB = 0
DO 10 I=1,N
VC(I) = 0
SUBR(I) = 0
RBUS(I) = 0
P(I) = 1
10 CONTINUE
DO 30 I=1,N
J1 = PR(I) + 1
J2 = PR(I+1)
VR(I) = J2 - J1 + 1
IF (VR(I).EQ.0) RETURN
DO 20 J=J1,J2
JA = AR(J)
VC(JA) = VC(JA) + 1
20 CONTINUE
30 CONTINUE
PC(1) = 0
DO 40 I=1,N
IF (VC(I).EQ.0) RETURN
PC(I+1) = PC(I) + VC(I)
VC(I) = 0
40 CONTINUE
DO 60 I=1,N
J1 = PR(I) + 1
J2 = PR(I+1)
DO 50 J=J1,J2
JJ = AR(J)
VC(JJ) = VC(JJ) + 1
JA = PC(JJ) + VC(JJ)
AC(JA) = I
50 CONTINUE
60 CONTINUE
MP1 = M + 1
C SELECT AS ROOT JR THE VERTEX I WITH MAXIMUM VC(I)
C (BREAK TIES BY CHOOSING I WITH MINIMUM VR(I) ).
MAXE = VC(1)
MINU = VR(1)
JR = 1
DO 100 I=2,N
IF (VC(I)-MAXE) 100, 70, 80
70 IF (VR(I).GE.MINU) GO TO 100
GO TO 90
80 MAXE = VC(I)
90 MINU = VR(I)
JR = I
100 CONTINUE
K1 = -NP1
K = 1
S(1) = JR
C
C S T E P 1 (SEARCH FOR IMPLIED ARCS).
C
110 DO 120 J=1,N
IF (VR(J).EQ.1) GO TO 130
IF (VC(J).EQ.1) GO TO 170
120 CONTINUE
C NO FURTHER ARC CAN BE IMPLIED.
GO TO 220
C ARC (J,JL) IS IMPLIED BECAUSE VR(J) = 1 .
130 L1 = PR(J) + 1
L2 = PR(J+1)
DO 140 L=L1,L2
IF (AR(L).GT.0) GO TO 150
140 CONTINUE
150 JL = AR(L)
C FIND THE STARTING VERTEX IT1 AND THE ENDING VERTEX IT2
C OF THE LARGEST PATH OF IMPLIED ARCS CONTAINING (J,JL) .
CALL PATH(J, JL, SUBR, RBUS, AR, PR, S, N, NP, IT1, IT2, K, JR,
* M, NP1)
IF (NP.EQ.0) GO TO 160
IF (NP.EQ.(-1)) GO TO 340
C SUBROUTINE PATH FOUND A HAMILTONIAN CIRCUIT.
K = K + 1
GO TO 320
160 SUBR(J) = K1 - JL
RBUS(JL) = J
C REMOVE FROM THE GRAPH ALL ARCS TERMINATING AT JL .
CALL IUPD(J, JL, L, AC, AR, PC, PR, VC, VR, K1, N, M, NP1)
IF (J.EQ.0) GO TO 340
GO TO 210
C ARC (JL,J) IS IMPLIED BECAUSE VC(J) = 1 .
170 L1 = PC(J) + 1
L2 = PC(J+1)
DO 180 L=L1,L2
IF (AC(L).GT.0) GO TO 190
180 CONTINUE
190 JL = AC(L)
C FIND THE STARTING VERTEX IT1 AND THE ENDING VERTEX IT2
C OF THE LARGEST PATH OF IMPLIED ARCS CONTAINING (JL,J) .
CALL PATH(JL, J, SUBR, RBUS, AR, PR, S, N, NP, IT1, IT2, K, JR,
* M, NP1)
IF (NP.EQ.0) GO TO 200
IF (NP.EQ.(-1)) GO TO 340
C SUBROUTINE PATH FOUND A HAMILTONIAN CIRCUIT.
I = S(K)
K = K + 1
GO TO 320
200 SUBR(JL) = K1 - J
RBUS(J) = JL
C REMOVE FROM THE GRAPH ALL ARCS EMANATING FROM JL .
CALL IUPD(J, JL, L, AR, AC, PR, PC, VR, VC, K1, N, M, NP1)
IF (J.EQ.0) GO TO 340
C IF ARC (IT2,IT1) IS IN THE GRAPH, REMOVE IT.
210 CALL RARC(IT2, IT1, AR, AC, PR, PC, VR, VC, K1, JJ, LL, N, M, NP1)
IF (JJ.EQ.(-1)) GO TO 340
GO TO 110
C
C S T E P 2 (ADD IMPLIED ARCS TO S ).
C
220 I = S(K)
IF (SUBR(I).EQ.0) GO TO 230
JSUBR = -SUBR(I) + SUBR(I)/NP1*NP1
IF (JSUBR.EQ.JR) GO TO 340
K = K + 1
S(K) = JSUBR
IF (K.NE.N) GO TO 220
IF (SUBR(JSUBR).LT.0) GO TO 320
GO TO 340
C
C S T E P 3 (BRANCH).
C
230 L1 = PR(I) + P(I)
L2 = PR(I+1)
IF (L1.GT.L2) GO TO 340
C FIND THE NEXT ARC (I,JL) TO BE ADDED TO S .
DENS = N**3
J1 = 0
J2 = 0
DO 310 J=L1,L2
JL = AR(J)
IF (JL.LT.0) GO TO 310
IF (VR(JL).GT.0) GO TO 260
IF (SUBR(JL).EQ.0) GO TO 310
IF (JL.EQ.JR) GO TO 310
IEND = JL
240 IEND = -SUBR(IEND) + SUBR(IEND)/NP1*NP1
IF (SUBR(IEND).NE.0) GO TO 240
IF (VC(JL).LT.VR(IEND)) GO TO 250
SCORE = VR(IEND)*N + VC(JL)
GO TO 280
250 SCORE = VC(JL)*N + VR(IEND)
GO TO 280
260 IF (VC(JL).LT.VR(JL)) GO TO 270
SCORE = VR(JL)*N + VC(JL)
GO TO 280
270 SCORE = VC(JL)*N + VR(JL)
280 IF (DENS.LE.SCORE) GO TO 290
DENS = SCORE
IPI = J
290 IF (J1.EQ.0) GO TO 300
IF (J2.EQ.0) J2 = J
GO TO 310
300 J1 = J
310 CONTINUE
IF (J1.EQ.0) GO TO 340
JL = AR(IPI)
AR(IPI) = AR(J1)
AR(J1) = JL
IF (J2.EQ.0) J2 = PR(I+1) + 1
P(I) = J2 - PR(I)
K = K + 1
S(K) = JL
K1 = -K*NP1
C REMOVE FROM THE GRAPH ALL ARCS EMANATING FROM I .
CALL FUPD(AR, AC, PR, PC, VR, VC, I, K1, N, M, NP1)
C REMOVE FROM THE GRAPH ALL ARCS TERMINATING AT JL .
CALL FUPD(AC, AR, PC, PR, VC, VR, JL, K1, N, M, NP1)
TOR(K) = 0
C IF ARC (JL,JR) IS IN THE GRAPH, REMOVE IT.
CALL RARC(JL, JR, AR, AC, PR, PC, VR, VC, K1, JJ, LL, N, M, NP1)
IF (JJ.EQ.0) GO TO 110
IF (JJ.EQ.(-1)) GO TO 340
TOR(K) = JJ*MP1 + LL
GO TO 110
C
C S T E P 4 (HAMILTONIAN CIRCUIT FOUND).
C
320 NC = NC + 1
IF (KW.EQ.(-1)) GO TO 330
WRITE (KW,99999) (S(KJ),KJ=1,N)
99999 FORMAT (20I5)
330 IF (NC.EQ.NCO) GO TO 430
K = K - 1
C
C S T E P 5 (BACKTRACK).
C
340 IF (K.LE.1) GO TO 430
JA = S(K)
P(JA) = 1
JA = S(K-1)
IF (SUBR(JA).EQ.0) GO TO 350
C BACKTRACKING FOR AN IMPLIED ARC.
K = K - 1
GO TO 340
350 IF (NB.EQ.NBO) GO TO 430
NB = NB + 1
K1 = -K*NP1
K2 = -(K+1)*NP1
I = S(K-1)
C BACKTRACKING FOR THE ARCS IMPLIED AT LEVEL K .
IFF = 0
DO 360 J=1,N
IF (SUBR(J).GT.K1) GO TO 360
IF (SUBR(J).LT.K2) GO TO 360
JA = K1 - SUBR(J)
RBUS(JA) = 0
SUBR(J) = 0
IFF = 1
360 CONTINUE
IF (IFF.EQ.1) GO TO 370
C NO ARC WAS IMPLIED AT LEVEL K .
CALL BUPD(AR, AC, PR, PC, VR, VC, I, K1, K2, N, M, NP1)
CALL BUPD(AC, AR, PC, PR, VC, VR, S(K), K1, K2, N, M, NP1)
IF (TOR(K).EQ.0) GO TO 420
J1 = TOR(K)/MP1
J2 = TOR(K) - J1*MP1
AR(J1) = JR
JA = S(K)
VR(JA) = VR(JA) + 1
AC(J2) = S(K)
VC(JR) = VC(JR) + 1
GO TO 420
C AT LEAST ONE ARC WAS IMPLIED AT LEVEL K .
370 DO 410 J=1,N
L1 = PR(J) + 1
L2 = PR(J+1)
DO 400 L=L1,L2
JL = AR(L)
IF (JL.GT.K1) GO TO 400
IF (JL.LT.K2) GO TO 400
JL = K1 - JL
AR(L) = JL
VR(J) = VR(J) + 1
LL1 = PC(JL) + 1
LL2 = PC(JL+1)
DO 380 LL=LL1,LL2
IF (K1-AC(LL).EQ.J) GO TO 390
380 CONTINUE
390 AC(LL) = J
VC(JL) = VC(JL) + 1
400 CONTINUE
410 CONTINUE
420 K = K - 1
GO TO 230
C
C RE-STORE THE ORIGINAL VECTOR AR .
C
430 DO 440 J=1,M
IF (AR(J).GT.0) GO TO 440
AR(J) = -AR(J) + AR(J)/NP1*NP1
440 CONTINUE
RETURN
END
SUBROUTINE PATH(I, J, SUBR, RBUS, AR, PR, S, N, NP, I1, I2, K, PAT 10
* JR, M, NP1)
C SUBROUTINE TO FIND THE STARTING VERTEX I1 AND THE ENDING
C VERTEX I2 OF THE LARGEST PATH OF IMPLIED ARCS CONTAINING
C ARC (I,J) .
C MEANING OF THE OUTPUT PARAMETER NP :
C NP = 0 IF THE PATH CONTAINS L .LT. N VERTICES.
C = 1 IF THE PATH CONTAINS N VERTICES AND ARC (I2,I1)
C EXISTS (THE HAMILTONIAN CIRCUIT IS STORED IN S )
C = -1 IF THE PATH CONTAINS N VERTICES BUT ARC (I2,I1)
C DOES NOT EXIST.
INTEGER SUBR(N), RBUS(N), AR(M), PR(NP1), S(N)
NP = 0
L = 1
I1 = I
10 IF (RBUS(I1).EQ.0) GO TO 20
I1 = RBUS(I1)
L = L + 1
GO TO 10
20 I2 = J
L = L + 1
30 IF (SUBR(I2).EQ.0) GO TO 40
I2 = -SUBR(I2) + SUBR(I2)/NP1*NP1
L = L + 1
GO TO 30
40 CONTINUE
IF (L.LT.N) RETURN
C THE PATH CONTAINS N VERTICES.
K1 = -K*NP1
L1 = PR(I2) + 1
L2 = PR(I2+1)
DO 60 L=L1,L2
IF (AR(L).LT.0) GO TO 50
IF (AR(L).EQ.I1) GO TO 70
GO TO 60
50 IF (K1-AR(L).EQ.I1) GO TO 70
60 CONTINUE
C NO HAMILTONIAN CIRCUIT CAN BE DETERMINED.
NP = -1
RETURN
C A HAMILTONIAN CIRCUIT EXISTS. STORE IT IN S .
70 NP = 1
RBUS(J) = I
RBUS(I1) = I2
S(N) = RBUS(JR)
L = N - 1
80 IF (L.EQ.K) GO TO 90
JA = S(L+1)
S(L) = RBUS(JA)
L = L - 1
GO TO 80
90 RBUS(I1) = 0
RBUS(J) = 0
RETURN
END
SUBROUTINE FUPD(A1, A2, P1, P2, V1, V2, I1, K1, N, M, NP1) FUP 10
C FORWARD STEP UPDATING
INTEGER A1(M), A2(M), P1(NP1), P2(NP1), V1(N), V2(N)
J1 = P1(I1) + 1
J2 = P1(I1+1)
DO 30 J=J1,J2
IF (A1(J).LT.0) GO TO 30
IA = A1(J)
L1 = P2(IA) + 1
L2 = P2(IA+1)
DO 10 L=L1,L2
IF (A2(L).EQ.I1) GO TO 20
10 CONTINUE
20 V2(IA) = V2(IA) - 1
A2(L) = K1 - A2(L)
A1(J) = K1 - IA
30 CONTINUE
V1(I1) = 0
RETURN
END
SUBROUTINE BUPD(A1, A2, P1, P2, V1, V2, II, K1, K2, N, M, NP1) BUP 10
C BACKTRACKING STEP UPDATING
INTEGER A1(M), A2(M), P1(NP1), P2(NP1), V1(N), V2(N)
L1 = P1(II) + 1
L2 = P1(II+1)
DO 30 L=L1,L2
IF (A1(L).GT.K1) GO TO 30
IF (A1(L).LT.K2) GO TO 30
IA = K1 - A1(L)
A1(L) = IA
V1(II) = V1(II) + 1
LL1 = P2(IA) + 1
LL2 = P2(IA+1)
DO 10 LL=LL1,LL2
IF (K1-A2(LL).EQ.II) GO TO 20
10 CONTINUE
20 A2(LL) = II
V2(IA) = V2(IA) + 1
30 CONTINUE
RETURN
END
SUBROUTINE IUPD(IA, IB, L, A1, A2, P1, P2, V1, V2, K1, N, M, NP1) IUP 10
INTEGER A1(M), A2(M), P1(NP1), P2(NP1), V1(N), V2(N)
C UPDATING FOR IMPLIED ARC
M1 = P1(IB) + 1
M2 = P1(IB+1)
DO 40 MM=M1,M2
IARC = A1(MM)
IF (IARC.LT.0) GO TO 40
IF (V2(IARC).NE.1) GO TO 10
IF (IARC.NE.IA) GO TO 50
JJ = L
GO TO 30
10 J1 = P2(IARC) + 1
J2 = P2(IARC+1)
DO 20 JJ=J1,J2
IF (A2(JJ).EQ.IB) GO TO 30
20 CONTINUE
30 A2(JJ) = K1 - A2(JJ)
V2(IARC) = V2(IARC) - 1
A1(MM) = K1 - IARC
V1(IB) = V1(IB) - 1
40 CONTINUE
RETURN
50 IA = 0
RETURN
END
SUBROUTINE RARC(IA, IB, AR, AC, PR, PC, VR, VC, K1, JJ, LL, N, M, RAR 10
* NP1)
C SUBROUTINE TO REMOVE ARC (IA,IB) FROM THE GRAPH.
C MEANING OF THE OUTPUT PARAMETERS JJ AND LL :
C JJ = LOCATION OF THE ELEMENT OF AR CORRESPONDING TO THE
C REMOVED ARC.
C = 0 IF ARC (IA,IB) IS NOT IN THE GRAPH.
C = -1 IF, AFTER THE REMOVAL OF ARC (IA,IB) , THE GRAPH
C WOULD ADMIT NO HAMILTONIAN CIRCUIT.
C LL = LOCATION OF THE ELEMENT OF AC CORRESPONDING TO THE
C REMOVED ARC (DEFINED ONLY IF JJ .GT. 0 ).
INTEGER AR(M), AC(M), PR(NP1), PC(NP1), VR(N), VC(N)
J1 = PR(IA) + 1
J2 = PR(IA+1)
DO 20 JJ=J1,J2
IF (AR(JJ).LT.0) GO TO 20
IF (AR(JJ).NE.IB) GO TO 20
L1 = PC(IB) + 1
L2 = PC(IB+1)
DO 10 LL=L1,L2
IF (AC(LL).EQ.IA) GO TO 30
10 CONTINUE
20 CONTINUE
C ARC (IA,IB) IS NOT IN THE GRAPH.
JJ = 0
RETURN
30 IF (VR(IA).EQ.1) GO TO 40
IF (VC(IB).EQ.1) GO TO 40
AR(JJ) = K1 - IB
VR(IA) = VR(IA) - 1
AC(LL) = K1 - IA
VC(IB) = VC(IB) - 1
RETURN
C ARC (IA,IB) CANNOT BE REMOVED FROM THE GRAPH.
40 JJ = -1
RETURN
END
6
0 3 5 8 11 13 16
3 5 6 6 3 6 1 4 5 1
2 2 3 4 2 5
ian@ian-HP-Stream-Laptop-11-y0XX:~/595gz$ sloccount 595.f
Have a non-directory at the top, so creating directory top_dir
Adding /home/ian/595gz/595.f to top_dir
Categorizing files.
Finding a working MD5 command....
Found a working MD5 command.
Computing results.
SLOC Directory SLOC-by-Language (Sorted)
409 top_dir fortran=409
Totals grouped by language (dominant language first):
fortran: 409 (100.00%)
Total Physical Source Lines of Code (SLOC) = 409
Development Effort Estimate, Person-Years (Person-Months) = 0.08 (0.94)
(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))
Schedule Estimate, Years (Months) = 0.20 (2.44)
(Basic COCOMO model, Months = 2.5 * (person-months**0.38))
Estimated Average Number of Developers (Effort/Schedule) = 0.38
Total Estimated Cost to Develop = $ 10,567
(average salary = $56,286/year, overhead = 2.40).
SLOCCount, Copyright (C) 2001-2004 David A. Wheeler
SLOCCount is Open Source Software/Free Software, licensed under the GNU GPL.
SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome to
redistribute it under certain conditions as specified by the GNU GPL license;
see the documentation for details.
Please credit this data as "generated using David A. Wheeler's 'SLOCCount'."
ian@ian-HP-Stream-Laptop-11-y0XX:~/595gz$