|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 12, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import numpy as np\n", |
| 10 | + "from allocation import Node\n", |
| 11 | + "from allocation import Net\n", |
| 12 | + "from allocation import PopGene" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": 13, |
| 18 | + "metadata": {}, |
| 19 | + "outputs": [], |
| 20 | + "source": [ |
| 21 | + "pop = -1 + 2 * np.random.random((100, 53 * 2))\n", |
| 22 | + "netlist = [['g8', 'gp2', 'g10', 'g11', 'g13'], ['g7', 'gp3', 'g10', 'g11'],\n", |
| 23 | + " ['g6', 'gp4', 'g11'], ['g14', 'gp5', 'g1', 'g18'], ['g5', 'gp6'],\n", |
| 24 | + " ['g5', 'gp7'], ['g17', 'gp8', 'g19', 'g20', 'g22'],\n", |
| 25 | + " ['g16', 'gp9', 'g19', 'g20'], ['g15', 'gp10','g20'], ['g0', 'gp11'],\n", |
| 26 | + " ['g0', 'gp12'], ['g0', 'gp13'], ['g2', 'gp14'], ['g2', 'gp15'],\n", |
| 27 | + " ['g2', 'gp16'], ['g25', 'gp17', 'g27', 'g28', 'g30'],\n", |
| 28 | + " ['g24', 'gp18', 'g27', 'g28'], ['g23', 'gp19', 'g28'],\n", |
| 29 | + " ['gp20', 'g10', 'g5', 'g19', 'g0', 'g2', 'g27', 'g11', 'g12', 'g20', 'g21', 'g28', 'g29'],\n", |
| 30 | + " ['gp21', 'g10', 'g5', 'g19', 'g0', 'g2', 'g27', 'g11', 'g12', 'g20', 'g21', 'g28', 'g29'],\n", |
| 31 | + " ['gp0', 'g4', 'g5', 'g1', 'g0', 'g2', 'g3'],\n", |
| 32 | + " ['gp1', 'g5', 'g0', 'g2', 'g3', 'g26'], ['g4', 'g6', 'g7', 'g8'],\n", |
| 33 | + " ['g11', 'g6'], ['g9', 'g6', 'g7', 'g8'], ['g12', 'g6', 'g7', 'g8'],\n", |
| 34 | + " ['g10', 'g7'], ['g13', 'g8'], ['g1', 'g15', 'g16', 'g17'],\n", |
| 35 | + " ['g20', 'g15'], ['g18', 'g15', 'g16', 'g17'],\n", |
| 36 | + " ['g21', 'g15', 'g16', 'g17'], ['g19', 'g16'], ['g22', 'g17'],\n", |
| 37 | + " ['g3', 'g23', 'g24', 'g25'], ['g28', 'g23'],\n", |
| 38 | + " ['g26', 'g23', 'g24', 'g25'], ['g29', 'g23', 'g24', 'g25'],\n", |
| 39 | + " ['g27', 'g24'], ['g30', 'g25']]\n", |
| 40 | + "expdict = {\n", |
| 41 | + " 'g0': 65,\n", |
| 42 | + " 'g1': 53,\n", |
| 43 | + " 'g2': 65,\n", |
| 44 | + " 'g3': 53,\n", |
| 45 | + " 'g4': 52,\n", |
| 46 | + " 'g5': 64,\n", |
| 47 | + " 'g6': 6,\n", |
| 48 | + " 'g7': 6,\n", |
| 49 | + " 'g8': 6,\n", |
| 50 | + " 'g9': 2,\n", |
| 51 | + " 'g10': 6,\n", |
| 52 | + " 'g11': 7,\n", |
| 53 | + " 'g12': 4,\n", |
| 54 | + " 'g13': 3,\n", |
| 55 | + " 'g14': 1,\n", |
| 56 | + " 'g15': 6,\n", |
| 57 | + " 'g16': 6,\n", |
| 58 | + " 'g17': 6,\n", |
| 59 | + " 'g18': 3,\n", |
| 60 | + " 'g19': 6,\n", |
| 61 | + " 'g20': 7,\n", |
| 62 | + " 'g21': 4,\n", |
| 63 | + " 'g22': 3,\n", |
| 64 | + " 'g23': 6,\n", |
| 65 | + " 'g24': 6,\n", |
| 66 | + " 'g25': 6,\n", |
| 67 | + " 'g26': 3,\n", |
| 68 | + " 'g27': 6,\n", |
| 69 | + " 'g28': 7,\n", |
| 70 | + " 'g29': 4,\n", |
| 71 | + " 'g30': 3,\n", |
| 72 | + " 'gp0': 1,\n", |
| 73 | + " 'gp1': 1,\n", |
| 74 | + " 'gp2': 1,\n", |
| 75 | + " 'gp3': 1,\n", |
| 76 | + " 'gp4': 1,\n", |
| 77 | + " 'gp5': 1,\n", |
| 78 | + " 'gp6': 1,\n", |
| 79 | + " 'gp7': 1,\n", |
| 80 | + " 'gp8': 1,\n", |
| 81 | + " 'gp9': 1,\n", |
| 82 | + " 'gp10': 1,\n", |
| 83 | + " 'gp11': 1,\n", |
| 84 | + " 'gp12': 1,\n", |
| 85 | + " 'gp13': 1,\n", |
| 86 | + " 'gp14': 1,\n", |
| 87 | + " 'gp15': 1,\n", |
| 88 | + " 'gp16': 1,\n", |
| 89 | + " 'gp17': 1,\n", |
| 90 | + " 'gp18': 1,\n", |
| 91 | + " 'gp19': 1,\n", |
| 92 | + " 'gp20': 1,\n", |
| 93 | + " 'gp21': 1\n", |
| 94 | + "}" |
| 95 | + ] |
| 96 | + }, |
| 97 | + { |
| 98 | + "cell_type": "code", |
| 99 | + "execution_count": 14, |
| 100 | + "metadata": {}, |
| 101 | + "outputs": [], |
| 102 | + "source": [ |
| 103 | + "arepath = \"data\\design.are\"\n", |
| 104 | + "netpath = \"data\\design.net\"" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": 15, |
| 110 | + "metadata": {}, |
| 111 | + "outputs": [], |
| 112 | + "source": [ |
| 113 | + "net_exp = []\n", |
| 114 | + "for i in netlist:\n", |
| 115 | + " n_exp = Net(i)\n", |
| 116 | + " net_exp.append(n_exp)\n", |
| 117 | + "# print(net_exp)" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "code", |
| 122 | + "execution_count": null, |
| 123 | + "metadata": {}, |
| 124 | + "outputs": [], |
| 125 | + "source": [ |
| 126 | + "pop_exp = PopGene.popExp(pop)\n", |
| 127 | + "# lstvar, _, _ = PopGene.calVar(pop)\n", |
| 128 | + "lstsum = PopGene.calLink(pop, net_exp)\n", |
| 129 | + "# 分模式计算pop的fitness \n", |
| 130 | + "fitness = PopGene.fitnessCal(pop, net_exp, 2)" |
| 131 | + ] |
| 132 | + } |
| 133 | + ], |
| 134 | + "metadata": { |
| 135 | + "interpreter": { |
| 136 | + "hash": "8f9bc3c36f598f1386d29f180199d47716ceae483d281506558b89a7bcf84fc2" |
| 137 | + }, |
| 138 | + "kernelspec": { |
| 139 | + "display_name": "Python 3.7.9 64-bit", |
| 140 | + "language": "python", |
| 141 | + "name": "python3" |
| 142 | + }, |
| 143 | + "language_info": { |
| 144 | + "codemirror_mode": { |
| 145 | + "name": "ipython", |
| 146 | + "version": 3 |
| 147 | + }, |
| 148 | + "file_extension": ".py", |
| 149 | + "mimetype": "text/x-python", |
| 150 | + "name": "python", |
| 151 | + "nbconvert_exporter": "python", |
| 152 | + "pygments_lexer": "ipython3", |
| 153 | + "version": "3.7.9" |
| 154 | + }, |
| 155 | + "orig_nbformat": 4 |
| 156 | + }, |
| 157 | + "nbformat": 4, |
| 158 | + "nbformat_minor": 2 |
| 159 | +} |
0 commit comments