-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdraft.py
930 lines (826 loc) · 30.2 KB
/
draft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
import numpy as np
import math
import re
import matplotlib.pyplot as plt
import matplotlib.patches as pth
import shapely.geometry.polygon as shplyg
from time import time
import random
class area():
def __init__(self, ist, ru):
self._pntList = ist
self.SD = ru[0]
self.GATE = ru[1]
self.SD_GATE = ru[2]
self.SD_ITO = ru[3]
self.GATE_ITO = ru[4]
class polygon():
def __init__(self, lst, id, port):
n = len(lst)
self._id = id # 多边形的 id 号
self._nospnt = n # 多边形所包含的顶点个数
self._color = np.random.rand(3) # 多边形所填充的颜色(方便查看)
self._angle = 0 # 初始化,多边形的角度方向[0,1,2,3]分别表示[0度,90度,180度,270度]
self._mirror = 0 # 初始化,多边形的镜像[0,1]分别表示 [没有镜像、以center为中心上下镜像]
self._shift = (0,0) # 初始化,多边形的位置偏置
ar = np.asarray(lst)
self._ld = np.min(lst,0) # 把多边形围起来的矩阵的左下角坐标
self._ru = np.max(lst,0) # 把多边形围起来的矩阵的右上角坐标
self._center = np.mean([self._ld,self._ru],0) # 多边形的中心点
self._pntList = lst # 多边形的顶点坐标列表(根据angle/mirror/shift参数更新后的坐标)
# self._pntTuple 为原始顶点坐标,不可变更
pntLst = []
for i in range(n):
pntLst.append(lst[i])
self._pntTuple = tuple(pntLst)
self._port = port # port列表中第1、3个是SD,第2个是GATE
def getCorner(self):
return [self._ld, self._ru]
#return [self._ld[0],self._ld[1],self._ru[0],self._ru[1]]
def getColor(self):
return self._color
def getID(self):
return self._id
def getCenter(self):
return self._center
def getCurrentPointsLst(self):
return self._pntList
# 根据给出来的参数,从***初始状态***下应用上述参数,更新多边形数据
def updateParameters(self,x,y,mirror,angle):
pntLst = list(self._pntTuple) #从***初始状态***开始
# 把多边形整体偏移,偏移量=[x,y]
if x!=0 or y!=0:
for i in range(self._nospnt):
pntLst[i] = [pntLst[i][0]+x, pntLst[i][1]+y]
self._shift = [x,y] # 更新
self._center = np.mean([np.min(pntLst,0),np.max(pntLst,0)],0) # 更新
# 把多边形沿着 self.center 横轴做镜像
self._mirror=mirror # 更新
if self._mirror!=0:
doubleCenterY = 2*self._center[1]
for i in range(self._nospnt):
pntLst[i] = [pntLst[i][0],doubleCenterY-pntLst[i][1]]
# 把多边形围绕着 self.center 旋转,旋转角度为=angle
self._angle = angle *90 # 更新
if self._angle!=0:
for i in range(self._nospnt):
pntLst[i] = self._rotatePoint(pntLst[i], self._center, self._angle)
self._ld = np.min(pntLst,0)
self._ru = np.max(pntLst,0)
self._pntList = pntLst
def _rotatePoint(self, mvpoint, pivotpoint, angle):
# 顶点 mvpoint 围绕顶点 pivotpoint 旋转 angle 角度
# 参考了 https://community.esri.com/t5/arcgis-pro-questions/rotate-polygon-using-attribute/td-p/1055568
angle_rad = -math.radians(angle)
ox, oy = pivotpoint
px, py = mvpoint
qx = ox + math.cos(angle_rad) * (px - ox) - math.sin(angle_rad) * (py - oy)
qy = oy + math.sin(angle_rad) * (px - ox) + math.cos(angle_rad) * (py - oy)
mvpoint = [round(qx,1), round(qy,1)]
return mvpoint
# ------------------------------------------------------
# ----------------- polygon 类定义结束------------------
# ------------------------------------------------------
def implement(caseNum):
# 根据案例号 caseNum 读取对应文件 filename ,并获得多边形列表 polyLst
filename = "contest_case/Ports_area_etc_input_"+str(caseNum)+".txt"
_,polyLst = readFile(filename)
# 设置图像
fig = plt.figure()
# 设置子图121画布 ax
ax = fig.add_subplot(121,aspect='equal')
# 把多边形列表 polyLst 中所有多边形显示在 ax 中
[ox, oy, dx, dy] = plotPolys(ax,polyLst)
# 计算边框面积大小
orgsize = (dx-ox)*(dy-oy)
orgratio = (dx-ox)/(dy-oy)
# 打印初始的box大小
print("original box-size = ", orgsize, " , ratio = {:.2f}".format(orgratio))
"""
主要修改 changePolygons 函数和相关内容
"""
# 修改多边形列表 polyLst 中多边形的位置/镜像/角度
changePolygons(polyLst)
# 检查 polyLst
checkPolygonsOverlap(polyLst)
# 设置子图122画布 ax
ax = fig.add_subplot(122,aspect='equal')
# 把多边形列表 polyLst 中所有多边形显示在 ax 中
[ox, oy, dx, dy] = plotPolys(ax,polyLst)
# 计算边框面积大小
newsize = (dx-ox)*(dy-oy)
newratio = (dx-ox)/(dy-oy)
# 打印更新后box大小
print("new box-size = ", newsize, " , ratio = {:.2f}".format(newratio))
print("----- new-size / org-size : ", int(newsize/orgsize*100), "%")
# 显示plot
plt.show()
return [polyLst,newsize,newratio]
# 检查多边形之间的重叠
def checkPolygonsOverlap(polyLst):
# 采用 shapely 库中polygon类,把当前所有多边形封装在列表 shPlygonList[]
shPlygonList = []
for i in range(len(polyLst)):
shPlygonList.append(shplyg.Polygon(polyLst[i].getCurrentPointsLst()))
# 两两多边形进行检查是否存在重叠
for i in range(len(shPlygonList)):
for j in range(i+1,len(shPlygonList)):
if isOverlap(shPlygonList[i],shPlygonList[j]):
print('overlap: %d , %d'%(i+1,j+1))
# 判断i,j两个多边形是否重叠
def isOverlap(shplgi,shplgj):
itstn=shplgi.intersection(shplgj)
if itstn.area!=0:
return True
else:
return False
"""
函数 changePolygons 及相关代码是同学最需要修改的代码,
考核的核心就在这部分,即,如何变更多边形的状况,
使得外边框面积最小
"""
# 改变所有多边形的状况
def changePolygons(polyLst):
prosspolys = polyLst
autoCombine(prosspolys)
# # 读取文件filename里面的多边形,并把所有多边形放进列表polyLst并返回
# def readFile(filename):
# polyLst = [] #polyLst包含所有的多边形顶点坐标
# countPolyNos = 0
# fo = open(filename,"r")
# for line in fo:
# if line!="Polygon:\n":
# lst = [] #lst是某一个单独多边形顶点坐标
# while len(line)!=0:
# # result = re.match('\((\d+),(\d+)\)(.*)',line)
# result = re.search('\((\d+),(\d+)\)(.*)', line)
# lst.append([int(result.group(1)),int(result.group(2))])
# line = result.group(3)
# countPolyNos+=1 #计算多边形的个数,并作为当前多边形的ID号
# polyLst.append(polygon(lst,countPolyNos))
# pass
# fo.close()
# return polyLst
#读取文件
def readFile(filename):
#filename = "contest_case/Ports_area_etc_input_1.txt"
fo = open(filename, "r")
Area = []
ist = []
rul = []
polyLst=[]
id = ""
lst = []
port = []
cnt=0#记录一个module的port的个数
for line in fo:
if line[0] == "A":
result = re.findall(r'-?\d+\.?\d*e?-?\d*?', line)
pntNum = int(len(result) / 2) # area点的个数
for i in range(0, pntNum * 2 - 1, 2):
ist.append((float(result[i]), float(result[i + 1])))
elif line[0] == "R":
result = re.findall(r'-?\d+\.?\d*e?-?\d*?', line)
i = 0
while (i < 7):
if i < 4:
rul.append((float(result[i]), float(result[i + 1])))
i = i + 2
else:
rul.append((float(result[i])))
i = i + 1
elif line[0] == "M":
result = re.findall(r'M-?\d+', line) # result为list
id = ' '.join(result) # 转化为字符串
elif line[0] == "B":
result = re.findall(r'-?\d+\.?\d*e?-?\d*?', line)
pntNum = int(len(result) / 2) # module点的个数
for i in range(0, pntNum * 2 - 1, 2):
lst.append((float(result[i]), float(result[i + 1])))
print("读取的Boundary数据是",(float(result[i]), float(result[i + 1])))
elif line[0] == "P":
po=[]
result = re.findall(r'-?\d+\.?\d*e?-?\d*?', line)
pntNum = int(len(result) / 2) # module点的个数
for i in range(0, pntNum * 2 - 1, 2):
po.append((float(result[i]), float(result[i + 1])))
port.append(po)
cnt=cnt+1
if(cnt==3):
polyLst.append(polygon(lst, id, port))
cnt=0
id=""
lst=[]
port=[]
Area.append(area(ist, rul))
return Area,polyLst
#根据给出的polygon类对象onePolygon,在画布ax显示出来
def plotonepoly(ax, onePolygon):
# 把多边形的顶点列表围成一个patch,并放在画布ax中
tupleLst = onePolygon.getCurrentPointsLst()
patchesPoly = pth.Polygon(tupleLst, alpha=0.7)
patchesPoly.set_color(onePolygon.getColor())
ax.add_patch(patchesPoly)
# 画多边形的中心点
'''
x,y = onePolygon.getCenter()
patchesPolyOrg = pth.Circle((x,y),0.1)
patchesPolyOrg.set_color('black')
ax.add_patch(patchesPolyOrg)
'''
# 把id号显示在中心位置
'''
plt.text(x,y,onePolygon.getID(),fontsize=14)
'''
# 把polyLst列表中的所有polygon类对象在画布ax中显示出来
# (在此代码中,一定要先执行 plotonepoly 函数,再执行 minBox 函数,
# 因为 minBox 中需要使用更新后的 ld 和 ru 属性,而两个属性在
# getCurrentPointsLst 函数中被更新。plotonepoly 函数则调用了
# getCurrentPointsLst 函数。否则,外框的显示不正确)
def plotPolys(ax,polyLst):
# 找到所有polyLst的最小矩形外框
[LDx, LDy, RUx, RUy] = minBox(polyLst)
# 用Rectangle类对象rec表达minBox结果
p,w,h = (LDx, LDy),RUx-LDx,RUy-LDy
rec = pth.Rectangle(p,w,h,alpha=1,facecolor='white',edgecolor='red',linewidth=2)
# 把矩形rec放进画布ax
ax.add_patch(rec)
# 把所有多边形逐个放进画布ax
for i in range(len(polyLst)):
plotonepoly(ax, polyLst[i])
plt.grid()
# 设置画布ax大小
ax.set_xbound(LDx-10,RUx+10)
ax.set_ybound(LDy-10,RUy+10)
return [LDx, LDy, RUx, RUy]
# 找到一个最小的矩形,可以容纳 polyLst 里面所有多边形
# (此函数调用了 ld / ru 两个属性,使用前需确保属性已经被更新)
def minBox(polyLst):
LDx, LDy = 10**6,10**6
RUx, RUy = -10**6,-10**6
for i in range(len(polyLst)):
ld, ru = polyLst[i].getCorner()
ldx, ldy = ld
rux, ruy = ru
if ldx<LDx:
LDx = ldx
if ldy<LDy:
LDy = ldy
if rux>RUx:
RUx = rux
if ruy>RUy:
RUy = ruy
return [LDx, LDy, RUx, RUy]
'''———————————add———————————'''
# 检测MOVE多边形与KEEP是否重叠
def checkPolysOverlap(lcorner,polyLst,MOVE,need):
global check
if check == FUSE:
overlap = checkPolysOverFUSE(lcorner,polyLst[MOVE]._pntList)
if overlap == INVALID: # FUSE检测失效,启动AROUND检测
check = AROUND
print('------FUSE check pattern is invaild!------')
print('------------enter AROUND pattern!-----------')
if check == AROUND:
overlap = checkPolysOverAROUND(polyLst,MOVE,need)
return overlap
# 检测MOVE多边形与KEEP是否重叠(FUSE)
def checkPolysOverFUSE(pntlst1,pntlst2):
check1 = shplyg.Polygon(pntlst1) # 类型转换
if not check1.is_valid:
return INVALID
check2 = shplyg.Polygon(pntlst2)
return isOverlap(check1,check2)
# 检测MOVE多边形与KEEP是否重叠(AROUND)
def checkPolysOverAROUND(polyLst,MOVE,need):
move = shplyg.Polygon(polyLst[MOVE].getCurrentPointsLst())
for i in range(len(need)):
checkpoly = shplyg.Polygon(polyLst[need[i]].getCurrentPointsLst()) # 类型转换
if isOverlap(move,checkpoly):
return True
return False
# 检测多边形是否超出边框
def checkOverframe(lframe,Corner):
if Corner[RU][Y]>lframe[RU][Y] or Corner[LD][Y]<lframe[LD][Y] or Corner[LD][X]<lframe[LD][X] or Corner[RU][X]>lframe[RU][X]:
return True
else:
return False
# 判断拼接向量是否同向(处理特殊情况)
def checkVectorSameDirect(kpindex,mpindex,lcorner,lmovepnt,d1d2,kpflag):
'''
# 如果根本没有拼接到
if lcorner[kpindex] != lmovepnt[mpindex]:
return False
'''
# 第一个角点
IKp1 = kpindex+1
IMp1 = mpindex-d1d2
if IKp1 > len(lcorner)-1:
IKp1=0
if IMp1 > len(lmovepnt)-1:
IMp1=0
elif IMp1 < 0:
IMp1=len(lmovepnt)-1
# 第二个角点
IKp2 = kpindex-1
IMp2 = mpindex+d1d2
if IKp2 < 0:
IKp2=len(lcorner)-1
if IMp2 > len(lmovepnt)-1:
IMp2=0
elif IMp2 < 0:
IMp2=len(lmovepnt)-1
# 拼接向量
dotmul1 = (lcorner[IKp1][X]-lcorner[kpindex][X])*(lmovepnt[IMp1][X]-lcorner[kpindex][X]) + (lcorner[IKp1][Y]-lcorner[kpindex][Y])*(lmovepnt[IMp1][Y]-lcorner[kpindex][Y]) # vK1·vM1
dotmul2 = (lcorner[IKp2][X]-lcorner[kpindex][X])*(lmovepnt[IMp2][X]-lcorner[kpindex][X]) + (lcorner[IKp2][Y]-lcorner[kpindex][Y])*(lmovepnt[IMp2][Y]-lcorner[kpindex][Y]) # vK2·vM2
if kpflag == COMMON:
# 是否都同向
if dotmul1 > 0 and dotmul2 > 0:
return True
else:
return False
else:
# 一个同向即可
if dotmul1 > 0 or dotmul2 > 0:
return True
else:
return False
# 检测长宽比是否满足[0.9~1.1]
def checkRadioStandard(lminBoxcorner):
if lminBoxcorner[RU][Y]-lminBoxcorner[LD][Y] > 1.1*(lminBoxcorner[RU][X]-lminBoxcorner[LD][X]) or lminBoxcorner[RU][Y]-lminBoxcorner[LD][Y] < 0.9*(lminBoxcorner[RU][X]-lminBoxcorner[LD][X]):
print('ratio does not meet the requirements!')
else:
print('ratio meets the requirements~')
# 计算多边形的面积(return面积列表)
def computeArea(polyLst):
larea = []
for i in range(len(polyLst)):
shPlygon = shplyg.Polygon(polyLst[i].getCurrentPointsLst())
larea.append(shPlygon.area)
return larea
# 计算最小外接矩形的面积
def computeMinBoxArea(Corner):
return (Corner[RU][X]-Corner[LD][X]) * (Corner[RU][Y]-Corner[LD][Y])
# 计算多边形拼接的顺序及面积
def computeWait(polyLst):
larea = computeArea(polyLst)
if order == SEQUENT:
lwait = sorted(range(len(larea)),key=lambda i:larea[i],reverse=True)
else: # order == RANDOM
lwait = list(range(len(polyLst)))
random.shuffle(lwait)
return lwait,larea
# 计算边框
def computeFrame(larea):
totalArea = 0
for i in range(len(larea)):
totalArea += larea[i]
width = height = math.ceil(mult * np.sqrt(totalArea))
return [[0+X0,0+Y0],[width+X0,height+Y0]],width
# 计算所有多边形最小外接矩形的对角线长度
def computeDiagonal(polyLst):
ldiagdist = []
for i in range(len(polyLst)):
ld, ru = polyLst[i].getCorner()
ldiagdist.append(np.linalg.norm(ld-ru))
return ldiagdist
# 计算old状态
def computeOldState(polyLst,MOVE):
cen_old = polyLst[MOVE]._center
mir_old = polyLst[MOVE]._mirror
ang_old = polyLst[MOVE]._angle
dx0 = cen_old[X] - polyLst[MOVE]._center[X]
dy0 = cen_old[Y] - polyLst[MOVE]._center[Y]
return dx0,dy0,mir_old,ang_old
# 计算需要检测重叠的多边形
def computeNeedToCheck(ldiagdist,MOVE,combined,lcombcen,keypnt):
lneed = []
r1 = ldiagdist[MOVE]
for i in range(len(combined)):
dist = np.linalg.norm(lcombcen[i]-keypnt)
r2 = ldiagdist[combined[i]]/2
if dist < r1+r2:
lneed.append(combined[i])
return lneed
# 计算多边形点集物理下标递增的方向
def computeDirect(pntlst):
ring = shplyg.LinearRing(pntlst)
if ring.is_ccw:
return 1 # 顺时针
else:
return -1
# 计算多边形朝向(空缺角点)
def computeOrient(polygon,pattern):
nospnt = polygon._nospnt
if nospnt == 4:
if pattern == FULL:
return 0,0,0,0
return 0
Corner,pntList = polygon.getCorner(),polygon._pntList
nlu = nru = nld = nrd = 1
for i in range(len(pntList)):
if pntList[i][Y] == Corner[RU][Y] and pntList[i][X] == Corner[LD][X]:
nlu-=1
elif pntList[i][Y] == Corner[RU][Y] and pntList[i][X] == Corner[RU][X]:
nru-=1
elif pntList[i][Y] == Corner[LD][Y] and pntList[i][X] == Corner[LD][X]:
nld-=1
elif pntList[i][Y] == Corner[LD][Y] and pntList[i][X] == Corner[RU][X]:
nrd-=1
if pattern == FULL:
return nlu,nru,nld,nrd
# pattern == PART
n1,n2 = (nlu+nru),(nld+nrd)
if n1==n2==0:
return 0
return (n1-n2)/(n1+n2)
# 计算KEEP和MOVE连续重合的点数,或者连接点
def computeOverandConnect(kpindex,mpindex,lcorner,lmovepnt,d1d2,pattern,kpflag):
Kct1=Kct2=kpindex
Mct1=Mct2=mpindex
count = 1
# 判断拼接向量是否同向
if checkVectorSameDirect(kpindex,mpindex,lcorner,lmovepnt,d1d2,kpflag) == False:
return False
# 找到KEEP、MOVE的第1个连接点
while True:
Kct1+=1
Mct1-=d1d2
if Kct1 > len(lcorner)-1:
Kct1=0
if Mct1 > len(lmovepnt)-1:
Mct1=0
elif Mct1 < 0:
Mct1=len(lmovepnt)-1
if lcorner[Kct1] != lmovepnt[Mct1]:
break
count+=1
# 找到KEEP、MOVE的第2个连接点
while True:
Kct2-=1
Mct2+=d1d2
if Kct2 < 0:
Kct2=len(lcorner)-1
if Mct2 > len(lmovepnt)-1:
Mct2=0
elif Mct2 < 0:
Mct2=len(lmovepnt)-1
if lcorner[Kct2] != lmovepnt[Mct2]:
break
count+=1
if pattern == OVERLAP:
return count
else:
return [Kct1,Kct2,Mct1,Mct2]
# 计算coc
def computeCOC(kpindex,mpindex,lcorner,lmovepnt,kpflag):
d1d2=computeDirect(lcorner)*computeDirect(lmovepnt)
return computeOverandConnect(kpindex,mpindex,lcorner,lmovepnt,d1d2,OVERLAP,kpflag)
# 计算适应度
def computeFitness(kpindex,mpindex,lcorner,polyLst,MOVE,lminBoxcorner,nc,sm1,kpflag):
# ncoc/nc
ncoc = computeCOC(kpindex,mpindex,lcorner,polyLst[MOVE]._pntList,kpflag)
if ncoc == False: # 不合格状态
return False
# sm1/sm3
tmp = updateMinBox(lminBoxcorner,polyLst[MOVE]._pntList)
sm3 = computeMinBoxArea(tmp)
# (n1-n2)/(n1+n2)
dn = computeOrient(polyLst[MOVE],PART)
# 总适应度
fitness = A*(ncoc/nc) + B*(sm1/sm3) + C*(dn)
return fitness
# 初始化KEEP的位姿
def initialTranAndPose(X0,Y0,polyLst,KEEP):
if polyLst[KEEP]._nospnt == 4: # 矩形
# 平移
dx = X0 - polyLst[KEEP]._ld[X]
dy = Y0 - polyLst[KEEP]._ld[Y]
polyLst[KEEP].updateParameters(dx,dy,0,0)
else: # 非矩形
nlu,nru,nld,nrd = computeOrient(polyLst[KEEP],FULL)
if nru == True:
dx = X0 - polyLst[KEEP]._ld[X]
dy = Y0 - polyLst[KEEP]._ld[Y]
polyLst[KEEP].updateParameters(dx,dy,0,0)
elif nlu == True: # 顺时针旋转90°
polyLst[KEEP].updateParameters(0,0,0,1)
dx = X0 - polyLst[KEEP]._ld[X]
dy = Y0 - polyLst[KEEP]._ld[Y]
polyLst[KEEP].updateParameters(dx,dy,0,1)
elif nld == True: # 顺时针旋转180°
polyLst[KEEP].updateParameters(0,0,0,2)
dx = X0 - polyLst[KEEP]._ld[X]
dy = Y0 - polyLst[KEEP]._ld[Y]
polyLst[KEEP].updateParameters(dx,dy,0,2)
elif nrd == True: # 镜像
polyLst[KEEP].updateParameters(0,0,1,0)
dx = X0 - polyLst[KEEP]._ld[X]
dy = Y0 - polyLst[KEEP]._ld[Y]
polyLst[KEEP].updateParameters(dx,dy,1,0)
# 更新最小外接矩形
def updateMinBox(lminBoxcorner,newpntlst):
ldx,ldy = lminBoxcorner[LD][X],lminBoxcorner[LD][Y]
rux,ruy = lminBoxcorner[RU][X],lminBoxcorner[RU][Y]
for i in range(len(newpntlst)):
lx,ry = newpntlst[i][X],newpntlst[i][Y]
if lx < ldx:
ldx = lx
if ry < ldy:
ldy = ry
if lx > rux:
rux = lx
if ry > ruy:
ruy = ry
return [[ldx,ldy],[rux,ruy]]
# 更新角点
def updateCorners(kpindex,mpindex,lcorner,lmovepnt,kpflag):
# 2个多边形方向乘积
d1d2=computeDirect(lcorner)*computeDirect(lmovepnt)
# 计算连接点
tmp = computeOverandConnect(kpindex,mpindex,lcorner,lmovepnt,d1d2,CONNECT,kpflag)
if tmp == False:
return False
Kct1,Kct2,Mct1,Mct2 = tmp[0],tmp[1],tmp[2],tmp[3]
# 更新角点
newcorner=[]
# 插入KEEP的角点
while Kct1 != Kct2:
newcorner.append(lcorner[Kct1])
Kct1+=1
if Kct1>len(lcorner)-1:
Kct1 = 0
newcorner.append(lcorner[Kct2])
# 插入MOVE的角点
while Mct2 != Mct1:
newcorner.append(lmovepnt[Mct2])
Mct2+=d1d2
if Mct2 > len(lmovepnt)-1:
Mct2=0
elif Mct2 < 0:
Mct2=len(lmovepnt)-1
newcorner.append(lmovepnt[Mct1])
return newcorner
# 更新关键点及拼接模式
def updateKeypoint(lminBoxcorner,newcorners):
if len(newcorners) == 4:
keypoints = newcorners
kpindex = list(range(len(newcorners)))
kpflag = SPECIAL
print('updated keypoints do not exist kpflag == SPECIAL')
else:
keypoints,kpindex = [],[]
kpflag = COMMON
for i in range(len(newcorners)):
if lminBoxcorner[LD][X] < newcorners[i][X] < lminBoxcorner[RU][X] and lminBoxcorner[LD][Y] < newcorners[i][Y] < lminBoxcorner[RU][Y]:
keypoints.append(newcorners[i])
kpindex.append(i)
print('updated keypoints exist, kpflag == COMMON~')
return keypoints,kpindex,kpflag
# 打印MEET选取或尾插入的信息
def printInform(times,nsuccess,polyLst,moveid,pattern):
print('——————————————————————————————————————————')
if pattern == MEET:
# print('[ %d) 第 %d/%d 个多边形插入,序号为%d ]' % (times,nsuccess+1,len(polyLst),moveid))
print('[ %d) 第 %d/%d 个多边形插入,序号为%s ]' % (times,nsuccess+1,len(polyLst),moveid))
else: # pattern == TAIL
print('[ %d) 第 %d/%d 个多边形插入,尾处理... ]' % (times,nsuccess+1,len(polyLst)))
if check == FUSE:
print('检测模式为:FUSE')
else:
print('检测模式为:AROUND')
# 生成第二类关键点
def createKeypoint(lcorner):
kpflag = SPECIAL
print('created keypoints exist, kpflag == SPECIAL!')
kpindex = list(range(len(lcorner)))
return lcorner,kpindex,kpflag
# 多边形随角点移至关键点处
def changePolygonTranAndPose(polyLst,MOVE,lkeypnt,combkeypnt,combcorner,mirror,angle,pattern):
polyLst[MOVE].updateParameters(0,0,mirror,angle)
dx = lkeypnt[combkeypnt][X] - polyLst[MOVE]._pntList[combcorner][X]
dy = lkeypnt[combkeypnt][Y] - polyLst[MOVE]._pntList[combcorner][Y]
polyLst[MOVE].updateParameters(dx,dy,mirror,angle)
if pattern == FORCE:
return dx,dy
# MEET选取一个多边形
def meetSelect(polyLst,lcorner,lkeypnt,lkpindex,lwait,ldiagdist,lcombined,lcombcen,MOVE,lminBoxcorner,kpflag,lframe):
combkeypnt = combcorner = find = maxF = 0
nc = polyLst[MOVE]._nospnt
sm1 = computeMinBoxArea(lminBoxcorner)
# 达到阈值即可
for combkeypnt in range(len(lkeypnt)):
if len(lwait) < thfail: # 尾处理
break
need = computeNeedToCheck(ldiagdist,MOVE,lcombined,lcombcen,lkeypnt[combkeypnt])
for combcorner in range(polyLst[MOVE]._nospnt):
for mirror in range(2):
for angle in range(4):
# 多边形随角点移至关键点处
changePolygonTranAndPose(polyLst,MOVE,lkeypnt,combkeypnt,combcorner,mirror,angle,MEET)
# 判断是否重叠及出界
overlap = checkPolysOverlap(lcorner,polyLst,MOVE,need)
overframe = checkOverframe(lframe,polyLst[MOVE].getCorner())
if overlap or overframe:
continue
# 计算适应度
fitness = computeFitness(lkpindex[combkeypnt],combcorner,lcorner,polyLst,MOVE,lminBoxcorner,nc,sm1,kpflag)
if fitness == False: # 不合格状态
continue
if fitness > maxF:
maxF = fitness
if fitness > thF: # 适应度是否达标
find = 1
print('MOVE = %d find~' % polyLst[MOVE]._id)
break
if find == True:
break
if find == True:
break
if find == True:
break
return find,maxF,combkeypnt,combcorner
# FORCE选取一个多边形
def forceSelect(lwait,polyLst,lkeypnt,lkpindex,ldiagdist,lcombined,lcombcen,lcorner,lframe,lminBoxcorner,kpflag):
maxfit = maxid = maxdx = maxdy = maxmir = maxang = maxcombkp = maxcombcorn = 0
sm1 = computeMinBoxArea(lminBoxcorner)
print('----------选取适应度最高的多边形----------')
for i in range(min(thfail,len(lwait))):
TMOVE = lwait[i]
nc = polyLst[TMOVE]._nospnt
print('polygon currently detected is',TMOVE+1)
# 保存旧状态
dx0,dy0,mir_old,ang_old = computeOldState(polyLst,TMOVE)
for combkeypnt in range(len(lkeypnt)):
need = computeNeedToCheck(ldiagdist,TMOVE,lcombined,lcombcen,lkeypnt[combkeypnt])
for combcorner in range(polyLst[TMOVE]._nospnt):
for mirror in range(2):
for angle in range(4):
# 多边形随角点移至关键点处
dx,dy = changePolygonTranAndPose(polyLst,TMOVE,lkeypnt,combkeypnt,combcorner,mirror,angle,FORCE)
# 判断是否重叠及出界
overlap = checkPolysOverlap(lcorner,polyLst,TMOVE,need)
overframe = checkOverframe(lframe,polyLst[TMOVE].getCorner())
if overlap or overframe:
continue
# 计算适应度
fitness = computeFitness(lkpindex[combkeypnt],combcorner,lcorner,polyLst,TMOVE,lminBoxcorner,nc,sm1,kpflag)
if fitness == False:
continue
if fitness > maxfit:
maxfit,maxid,maxdx,maxdy,maxmir,maxang,maxcombkp,maxcombcorn = fitness,i,dx,dy,mirror,angle,combkeypnt,combcorner
# 恢复旧状态
polyLst[TMOVE].updateParameters(dx0,dy0,mir_old,ang_old)
return maxfit,maxid,maxdx,maxdy,maxmir,maxang,maxcombkp,maxcombcorn
# 将多边形移至等待列表的随机位置
def shuffleWait(thfail,lwait):
nmove = min(thfail,len(lwait))
moveid = [i for i in range(len(lwait))]
random.shuffle(moveid)
for i in range(nmove):
lwait.insert(moveid[i],lwait.pop(0))
# 扩展边框
def extendFrame(lframe,length):
for i in range(2):
lframe[RU][i] += math.ceil(exstep*length)
for i in range(2):
lframe[LD][i] -= math.ceil(exstep*length)
# 修复边框
def restoreFrame(lframe,lastframe,lminBoxcorner):
for i in range(2):
lframe[RU][i] = max(lastframe[RU][i],lminBoxcorner[RU][i])
for i in range(2):
lframe[LD][i] = min(lastframe[LD][i],lminBoxcorner[LD][i])
# 自动拼接
def autoCombine(polyLst):
'''——————initial——————'''
start_time = time()
# KEEP多边形
lwait,larea = computeWait(polyLst)
KEEP = lwait.pop(0)
lcombined = [KEEP]
initialTranAndPose(X0,Y0,polyLst,KEEP)
lminBoxcorner = [polyLst[KEEP]._ld,polyLst[KEEP]._ru]
lcorner = polyLst[KEEP]._pntList
lkeypnt,lkpindex,kpflag = updateKeypoint(lminBoxcorner,lcorner)
lcombcen = [polyLst[KEEP]._center]
# 边框
lframe,length = computeFrame(larea)
lastframe = []
# MOVE多边形
times,nfail,nsuccess,forceflag,danger = 0,0,1,OFF,False
ldiagdist = computeDiagonal(polyLst)
'''——————依次拼接——————'''
while nsuccess < len(polyLst):
if len(lwait) <= thfail: # 尾处理
forceflag = ON
'''——————MEET拼接——————'''
if forceflag == OFF: # MEET选取
# 选取MOVE
times+=1
MOVE = lwait.pop(0)
printInform(times,nsuccess,polyLst,polyLst[MOVE]._id,MEET)
# 保存旧状态
dx0,dy0,mir_old,ang_old = computeOldState(polyLst,MOVE)
# MEET选取
find,maxF,combkeypnt,combcorner = meetSelect(polyLst,lcorner,lkeypnt,lkpindex,lwait,ldiagdist,lcombined,lcombcen,MOVE,lminBoxcorner,kpflag,lframe)
print('max fitness:%.3f' % maxF)
# 如果找到了,为下一次MEET选取做准备(更新最小外接矩形、融合角点、融合关键点)
if find == True:
lcombined.append(MOVE)
lcombcen.append(polyLst[MOVE]._center)
nfail = 0
# forceflag = ON
nsuccess+=1
lmovepnt = polyLst[MOVE]._pntList
lminBoxcorner = updateMinBox(lminBoxcorner,lmovepnt)
if danger == True:
restoreFrame(lframe,lastframe,lminBoxcorner)
danger = False
lcorner = updateCorners(lkpindex[combkeypnt],combcorner,lcorner,lmovepnt,kpflag)
lkeypnt,lkpindex,kpflag = updateKeypoint(lminBoxcorner,lcorner)
# 如果没找到
else:
nfail+=1
# 恢复到old状态
polyLst[MOVE].updateParameters(dx0,dy0,mir_old,ang_old)
if len(lwait) >= thfail: # 尾处理
# print(type(polyLst[MOVE]._id))
print('(≧ ︿ ≦) MOVE = %s Not found!' % polyLst[MOVE]._id)
# print('(≧ ︿ ≦) MOVE = %d Not found!' % polyLst[MOVE]._id)
# 将拼接失败的多边形插入到等待队列,开启FORCE选取
lwait.insert(min(thfail-1,len(lwait)),MOVE)
if nfail >= thfail:
forceflag = ON
'''——————FORCE拼接——————'''
# 如果连续thfail次,或需要尾处理
# 连续thfail次:情况一: 处于无效关键点状态;情况二:处于阈值过高状态
if forceflag == ON:
if len(lwait) <= thfail:
printInform(times,nsuccess,polyLst,-1,-1)
# 生成足够多的关键点
if kpflag == COMMON:
lkeypnt,lkpindex,kpflag = createKeypoint(lcorner)
# FORCE选取
maxfit,maxid,maxdx,maxdy,maxmir,maxang,maxcombkp,maxcombcorn = forceSelect(lwait,polyLst,lkeypnt,lkpindex,ldiagdist,lcombined,lcombcen,lcorner,lframe,lminBoxcorner,kpflag)
# 如果找到了,为下一次MEET选取做准备
if maxfit > 0:
nfail = 0
forceflag = OFF
nsuccess+=1
MOVE = lwait.pop(maxid)
print('(ง •_•)ง选取适应度最高',round(maxfit,3),'的多边形 %d 插入' % (MOVE+1))
lcombined.append(MOVE)
polyLst[MOVE].updateParameters(maxdx,maxdy,maxmir,maxang)
lcombcen.append(polyLst[MOVE]._center)
lmovepnt = polyLst[MOVE]._pntList
lminBoxcorner = updateMinBox(lminBoxcorner,lmovepnt)
if danger == True:
restoreFrame(lframe,lastframe,lminBoxcorner)
danger = False
lcorner = updateCorners(lkpindex[maxcombkp],maxcombcorn,lcorner,lmovepnt,kpflag)
if len(lwait) <= thfail:
lkeypnt,lkpindex,kpflag = createKeypoint(lcorner)
else:
lkeypnt,lkpindex,kpflag = updateKeypoint(lminBoxcorner,lcorner)
# 仍然找不到
else:
print('----------------仍然失败!----------------')
if not danger and len(lwait)>thfail: # 移至随机位置,开启危险预警,继续FORCE选取
print('---------------移至随机位置---------------')
shuffleWait(thfail,lwait)
danger = True
lastframe = [[lframe[LD][X],lframe[LD][Y]],[lframe[RU][X],lframe[RU][Y]]]
else: # 危险状态下扩展边框,继续FORCE选取
print('----------(゚Д゚*)ノ extend frame!----------')
extendFrame(lframe,length)
# 结束
print('\n——————————————————————————————————————————————————')
print('总共需要拼接的多边形:%d个,成功拼接的多边形:%d个' % (len(polyLst),nsuccess))
checkRadioStandard(lminBoxcorner)
end_time = time()
print('The program need %.3f seconds' % (end_time-start_time))
return 0
'''———————字符常量———————'''
RANDOM = MEET = FUSE = OVERLAP = PART = COMMON = ON = LD = X = 0
SEQUENT = FORCE = AROUND = CONNECT = FULL = SPECIAL = OFF = RU = Y = 1
INVALID = -1
'''——————超参数设置——————'''
check = FUSE # 检测重叠模式(FUSE AROUND)
order = SEQUENT # 多边形拼接的顺序(SEQUENT RANDOM)
A,B,C = 1.3,0.45,0.1 # 适应度系数
thF = 0.72 # 适应度阈值
X0,Y0 = 0,0 # 原点
mult = 1.042 # 边框大小(SEQUENT:1.042 RANDOM:1.105)
exstep = 0.019 # 边框扩展步长
thfail = 1 # 连续失败次数阈值(SEQUENT:1 RANDOM:3)
#———————————main———————————#
if __name__ == '__main__':
iter = 1 # 迭代多少次
caseNum = 1 # 第几个文件
polyLst,a,b = implement(caseNum)
# 保存 polyLst 到本地文件
npyfile='savePolygonsInCase'+str(caseNum)+'InIter'+str(iter)+'.npy'
np.save(npyfile, polyLst)
print("data has been saved.")
# polyLst=np.load(npyfile) # 读取文件