|
| 1 | +# Lab 10 MNIST and Deep learning CNN |
| 2 | +import tensorflow as tf |
| 3 | +import random |
| 4 | +# import matplotlib.pyplot as plt |
| 5 | + |
| 6 | +from tensorflow.examples.tutorials.mnist import input_data |
| 7 | + |
| 8 | +tf.set_random_seed(777) # reproducibility |
| 9 | + |
| 10 | +mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) |
| 11 | +# Check out https://www.tensorflow.org/get_started/mnist/beginners for |
| 12 | +# more information about the mnist dataset |
| 13 | + |
| 14 | +# hyper parameters |
| 15 | +learning_rate = 0.001 |
| 16 | +training_epochs = 15 |
| 17 | +batch_size = 100 |
| 18 | + |
| 19 | +# dropout (keep_prob) rate 0.7~0.5 on training, but should be 1 for testing |
| 20 | +keep_prob = tf.placeholder(tf.float32) |
| 21 | + |
| 22 | +# input place holders |
| 23 | +X = tf.placeholder(tf.float32, [None, 784]) |
| 24 | +X_img = tf.reshape(X, [-1, 28, 28, 1]) # img 28x28x1 (black/white) |
| 25 | +Y = tf.placeholder(tf.float32, [None, 10]) |
| 26 | + |
| 27 | +# L1 ImgIn shape=(?, 28, 28, 1) |
| 28 | +W1 = tf.Variable(tf.random_normal([3, 3, 1, 32], stddev=0.01)) |
| 29 | +# Conv -> (?, 28, 28, 32) |
| 30 | +# Pool -> (?, 14, 14, 32) |
| 31 | +L1 = tf.nn.conv2d(X_img, W1, strides=[1, 1, 1, 1], padding='SAME') |
| 32 | +L1 = tf.nn.relu(L1) |
| 33 | +L1 = tf.nn.max_pool(L1, ksize=[1, 2, 2, 1], |
| 34 | + strides=[1, 2, 2, 1], padding='SAME') |
| 35 | +L1 = tf.nn.dropout(L1, keep_prob=keep_prob) |
| 36 | +''' |
| 37 | +Tensor("Conv2D:0", shape=(?, 28, 28, 32), dtype=float32) |
| 38 | +Tensor("Relu:0", shape=(?, 28, 28, 32), dtype=float32) |
| 39 | +Tensor("MaxPool:0", shape=(?, 14, 14, 32), dtype=float32) |
| 40 | +Tensor("dropout/mul:0", shape=(?, 14, 14, 32), dtype=float32) |
| 41 | +''' |
| 42 | + |
| 43 | +# L2 ImgIn shape=(?, 14, 14, 32) |
| 44 | +W2 = tf.Variable(tf.random_normal([3, 3, 32, 64], stddev=0.01)) |
| 45 | +# Conv ->(?, 14, 14, 64) |
| 46 | +# Pool ->(?, 7, 7, 64) |
| 47 | +L2 = tf.nn.conv2d(L1, W2, strides=[1, 1, 1, 1], padding='SAME') |
| 48 | +L2 = tf.nn.relu(L2) |
| 49 | +L2 = tf.nn.max_pool(L2, ksize=[1, 2, 2, 1], |
| 50 | + strides=[1, 2, 2, 1], padding='SAME') |
| 51 | +L2 = tf.nn.dropout(L2, keep_prob=keep_prob) |
| 52 | +''' |
| 53 | +Tensor("Conv2D_1:0", shape=(?, 14, 14, 64), dtype=float32) |
| 54 | +Tensor("Relu_1:0", shape=(?, 14, 14, 64), dtype=float32) |
| 55 | +Tensor("MaxPool_1:0", shape=(?, 7, 7, 64), dtype=float32) |
| 56 | +Tensor("dropout_1/mul:0", shape=(?, 7, 7, 64), dtype=float32) |
| 57 | +''' |
| 58 | + |
| 59 | +# L3 ImgIn shape=(?, 7, 7, 64) |
| 60 | +W3 = tf.Variable(tf.random_normal([3, 3, 64, 128], stddev=0.01)) |
| 61 | +# Conv ->(?, 7, 7, 128) |
| 62 | +# Pool ->(?, 4, 4, 128) |
| 63 | +# Reshape ->(?, 4 * 4 * 128) # Flatten them for FC |
| 64 | +L3 = tf.nn.conv2d(L2, W3, strides=[1, 1, 1, 1], padding='SAME') |
| 65 | +L3 = tf.nn.relu(L3) |
| 66 | +L3 = tf.nn.max_pool(L3, ksize=[1, 2, 2, 1], strides=[ |
| 67 | + 1, 2, 2, 1], padding='SAME') |
| 68 | +L3 = tf.nn.dropout(L3, keep_prob=keep_prob) |
| 69 | +L3 = tf.reshape(L3, [-1, 128 * 4 * 4]) |
| 70 | +''' |
| 71 | +Tensor("Conv2D_2:0", shape=(?, 7, 7, 128), dtype=float32) |
| 72 | +Tensor("Relu_2:0", shape=(?, 7, 7, 128), dtype=float32) |
| 73 | +Tensor("MaxPool_2:0", shape=(?, 4, 4, 128), dtype=float32) |
| 74 | +Tensor("dropout_2/mul:0", shape=(?, 4, 4, 128), dtype=float32) |
| 75 | +Tensor("Reshape_1:0", shape=(?, 2048), dtype=float32) |
| 76 | +''' |
| 77 | + |
| 78 | +# L4 FC 4x4x128 inputs -> 625 outputs |
| 79 | +W4 = tf.get_variable("W4", shape=[128 * 4 * 4, 625], |
| 80 | + initializer=tf.contrib.layers.xavier_initializer()) |
| 81 | +b4 = tf.Variable(tf.random_normal([625])) |
| 82 | +L4 = tf.nn.relu(tf.matmul(L3, W4) + b4) |
| 83 | +L4 = tf.nn.dropout(L4, keep_prob=keep_prob) |
| 84 | +''' |
| 85 | +Tensor("Relu_3:0", shape=(?, 625), dtype=float32) |
| 86 | +Tensor("dropout_3/mul:0", shape=(?, 625), dtype=float32) |
| 87 | +''' |
| 88 | + |
| 89 | +# L5 Final FC 625 inputs -> 10 outputs |
| 90 | +W5 = tf.get_variable("W5", shape=[625, 10], |
| 91 | + initializer=tf.contrib.layers.xavier_initializer()) |
| 92 | +b5 = tf.Variable(tf.random_normal([10])) |
| 93 | +hypothesis = tf.matmul(L4, W5) + b5 |
| 94 | +''' |
| 95 | +Tensor("add_1:0", shape=(?, 10), dtype=float32) |
| 96 | +''' |
| 97 | + |
| 98 | +# define cost/loss & optimizer |
| 99 | +cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( |
| 100 | + logits=hypothesis, labels=Y)) |
| 101 | +optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) |
| 102 | + |
| 103 | +# initialize |
| 104 | +sess = tf.Session() |
| 105 | +sess.run(tf.global_variables_initializer()) |
| 106 | + |
| 107 | +# train my model |
| 108 | +print('Learning stared. It takes sometime.') |
| 109 | +for epoch in range(training_epochs): |
| 110 | + avg_cost = 0 |
| 111 | + total_batch = int(mnist.train.num_examples / batch_size) |
| 112 | + |
| 113 | + for i in range(total_batch): |
| 114 | + batch_xs, batch_ys = mnist.train.next_batch(batch_size) |
| 115 | + feed_dict = {X: batch_xs, Y: batch_ys, keep_prob: 0.7} |
| 116 | + c, _, = sess.run([cost, optimizer], feed_dict=feed_dict) |
| 117 | + avg_cost += c / total_batch |
| 118 | + |
| 119 | + print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost)) |
| 120 | + |
| 121 | +print('Learning Finished!') |
| 122 | + |
| 123 | +# Test model and check accuracy |
| 124 | +correct_prediction = tf.equal(tf.argmax(hypothesis, 1), tf.argmax(Y, 1)) |
| 125 | +accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) |
| 126 | + |
| 127 | + |
| 128 | +def evaluate(X_sample, y_sample, batch_size=512): |
| 129 | + """Run a minibatch accuracy op""" |
| 130 | + |
| 131 | + N = X_sample.shape[0] |
| 132 | + correct_sample = 0 |
| 133 | + |
| 134 | + for i in range(0, N, batch_size): |
| 135 | + X_batch = X_sample[i: i + batch_size] |
| 136 | + y_batch = y_sample[i: i + batch_size] |
| 137 | + N_batch = X_batch.shape[0] |
| 138 | + |
| 139 | + feed = { |
| 140 | + X: X_batch, |
| 141 | + Y: y_batch, |
| 142 | + keep_prob: 1 |
| 143 | + } |
| 144 | + |
| 145 | + correct_sample += sess.run(accuracy, feed_dict=feed) * N_batch |
| 146 | + |
| 147 | + return correct_sample / N |
| 148 | + |
| 149 | +print("\nAccuracy Evaluates") |
| 150 | +print("-------------------------------") |
| 151 | +print('Train Accuracy:', evaluate(mnist.train.images, mnist.train.labels)) |
| 152 | +print('Test Accuracy:', evaluate(mnist.test.images, mnist.test.labels)) |
| 153 | + |
| 154 | + |
| 155 | +# Get one and predict |
| 156 | +print("\nGet one and predict") |
| 157 | +print("-------------------------------") |
| 158 | +r = random.randint(0, mnist.test.num_examples - 1) |
| 159 | +print("Label: ", sess.run(tf.argmax(mnist.test.labels[r:r + 1], 1))) |
| 160 | +print("Prediction: ", sess.run( |
| 161 | + tf.argmax(hypothesis, 1), {X: mnist.test.images[r:r + 1], keep_prob: 1})) |
| 162 | + |
| 163 | +# plt.imshow(mnist.test.images[r:r + 1]. |
| 164 | +# reshape(28, 28), cmap='Greys', interpolation='nearest') |
| 165 | +# plt.show() |
| 166 | + |
| 167 | +''' |
| 168 | +Learning stared. It takes sometime. |
| 169 | +Epoch: 0001 cost = 0.385748474 |
| 170 | +Epoch: 0002 cost = 0.092017397 |
| 171 | +Epoch: 0003 cost = 0.065854684 |
| 172 | +Epoch: 0004 cost = 0.055604566 |
| 173 | +Epoch: 0005 cost = 0.045996377 |
| 174 | +Epoch: 0006 cost = 0.040913645 |
| 175 | +Epoch: 0007 cost = 0.036924479 |
| 176 | +Epoch: 0008 cost = 0.032808939 |
| 177 | +Epoch: 0009 cost = 0.031791007 |
| 178 | +Epoch: 0010 cost = 0.030224456 |
| 179 | +Epoch: 0011 cost = 0.026849916 |
| 180 | +Epoch: 0012 cost = 0.026826763 |
| 181 | +Epoch: 0013 cost = 0.027188021 |
| 182 | +Epoch: 0014 cost = 0.023604777 |
| 183 | +Epoch: 0015 cost = 0.024607201 |
| 184 | +Learning Finished! |
| 185 | +Accuracy: 0.9938 |
| 186 | +''' |
0 commit comments