Skip to content

Commit 1a034ce

Browse files
authored
Docs(zh-hans): Refine wording for professionalism in README (#40943)
* [docs] Polish Chinese README translation by replacing informal terms with professional vocabulary * [docs] Polish Simplified Chinese README for better professionalism and consistency - Replace "抱抱脸" with "Hugging Face" to align with standard usage in Chinese developer community - Replace "流水线" with "pipeline" to maintain consistency with code and technical terminology - Add proper code formatting (`pipeline`) for API references to match Traditional Chinese version - Update translation dictionary to reflect these standardized terms - Improve overall readability and technical accuracy for Chinese developers These changes enhance the professionalism of the documentation while maintaining consistency with established technical terminology used by the Chinese developer community.
1 parent 6850ba8 commit 1a034ce

File tree

1 file changed

+12
-12
lines changed

1 file changed

+12
-12
lines changed

i18n/README_zh-hans.md

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -21,12 +21,12 @@ A useful guide for English-Chinese translation of Hugging Face documentation
2121
2222
Dictionary
2323
24-
Hugging Face: 抱抱脸
24+
Hugging Face: Hugging Face(不翻译)
2525
token: 词符(并用括号标注原英文)
2626
tokenize: 词符化(并用括号标注原英文)
2727
tokenizer: 词符化器(并用括号标注原英文)
2828
transformer: transformer(不翻译)
29-
pipeline: 流水线
29+
pipeline: pipeline(不翻译)
3030
API: API (不翻译)
3131
inference: 推理
3232
Trainer: 训练器。当作为类名出现时不翻译。
@@ -107,35 +107,35 @@ checkpoint: 检查点
107107
- [用 DistilBERT 做问答](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
108108
- [用 T5 做翻译](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
109109

110-
**[Write With Transformer](https://transformer.huggingface.co)**由抱抱脸团队打造,是一个文本生成的官方 demo。
110+
**[Write With Transformer](https://transformer.huggingface.co)**由 Hugging Face 团队打造,是一个文本生成的官方 demo。
111111

112-
## 如果你在寻找由抱抱脸团队提供的定制化支持服务
112+
## 如果你在寻找由 Hugging Face 团队提供的定制化支持服务
113113

114114
<a target="_blank" href="https://huggingface.co/support">
115115
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
116116
</a><br>
117117

118118
## 快速上手
119119

120-
我们为快速使用模型提供了 `pipeline` (流水线)API。流水线聚合了预训练模型和对应的文本预处理。下面是一个快速使用流水线去判断正负面情绪的例子
120+
我们为快速使用模型提供了 `pipeline` API。Pipeline 聚合了预训练模型和对应的文本预处理。下面是一个快速使用 pipeline 去判断正负面情绪的例子
121121

122122
```python
123123
>>> from transformers import pipeline
124124

125-
# 使用情绪分析流水线
125+
# 使用情绪分析 pipeline
126126
>>> classifier = pipeline('sentiment-analysis')
127127
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
128128
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
129129
```
130130

131-
第二行代码下载并缓存了流水线使用的预训练模型,而第三行代码则在给定的文本上进行了评估。这里的答案“正面” (positive) 具有 99 的置信度。
131+
第二行代码下载并缓存了 pipeline 使用的预训练模型,而第三行代码则在给定的文本上进行了评估。这里的答案"正面" (positive) 具有 99 的置信度。
132132

133-
许多的 NLP 任务都有开箱即用的预训练流水线。比如说,我们可以轻松的从给定文本中抽取问题答案:
133+
许多的 NLP 任务都有开箱即用的预训练 `pipeline`。比如说,我们可以轻松的从给定文本中抽取问题答案:
134134

135135
``` python
136136
>>> from transformers import pipeline
137137

138-
# 使用问答流水线
138+
# 使用问答 pipeline
139139
>>> question_answerer = pipeline('question-answering')
140140
>>> question_answerer({
141141
... 'question': 'What is the name of the repository ?',
@@ -145,7 +145,7 @@ checkpoint: 检查点
145145

146146
```
147147

148-
除了给出答案,预训练模型还给出了对应的置信度分数、答案在词符化 (tokenized) 后的文本中开始和结束的位置。你可以从[这个教程](https://huggingface.co/docs/transformers/task_summary)了解更多流水线API支持的任务
148+
除了给出答案,预训练模型还给出了对应的置信度分数、答案在词符化 (tokenized) 后的文本中开始和结束的位置。你可以从[这个教程](https://huggingface.co/docs/transformers/task_summary)了解更多 `pipeline` API 支持的任务
149149

150150
要在你的任务上下载和使用任意预训练模型也很简单,只需三行代码。这里是 PyTorch 版的示例:
151151
```python
@@ -193,11 +193,11 @@ checkpoint: 检查点
193193
1. 为你的需求轻松定制专属模型和用例:
194194
- 我们为每种模型架构提供了多个用例来复现原论文结果
195195
- 模型内部结构保持透明一致
196-
- 模型文件可单独使用,方便魔改和快速实验
196+
- 模型文件可单独使用,方便修改和快速实验
197197

198198
## 什么情况下我不该用 transformers?
199199

200-
- 本库并不是模块化的神经网络工具箱。模型文件中的代码特意呈若璞玉,未经额外抽象封装,以便研究人员快速迭代魔改而不致溺于抽象和文件跳转之中
200+
- 本库并不是模块化的神经网络工具箱。模型文件中的代码特意呈若璞玉,未经额外抽象封装,以便研究人员快速迭代修改而不致溺于抽象和文件跳转之中
201201
- `Trainer` API 并非兼容任何模型,只为本库之模型优化。若是在寻找适用于通用机器学习的训练循环实现,请另觅他库。
202202
- 尽管我们已尽力而为,[examples 目录](https://github.com/huggingface/transformers/tree/main/examples)中的脚本也仅为用例而已。对于你的特定问题,它们并不一定开箱即用,可能需要改几行代码以适之。
203203

0 commit comments

Comments
 (0)