Releases: huggingface/transformers.js
2.7.0
What's new?
🗣️ New task: Text to speech/audio
Due to popular demand, we've added text-to-speech
support to Transformers.js! 😍
TTS.waveform.mp4
You can get started in just a few lines of code!
import { pipeline } from '@xenova/transformers';
let speaker_embeddings = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/speaker_embeddings.bin';
let synthesizer = await pipeline('text-to-speech', 'Xenova/speecht5_tts', { quantized: false });
let out = await synthesizer('Hello, my dog is cute', { speaker_embeddings });
// {
// audio: Float32Array(26112) [-0.00005657337896991521, 0.00020583874720614403, ...],
// sampling_rate: 16000
// }
You can then save the audio to a .wav file with the wavefile package:
import wavefile from 'wavefile';
import fs from 'fs';
let wav = new wavefile.WaveFile();
wav.fromScratch(1, out.sampling_rate, '32f', out.audio);
fs.writeFileSync('out.wav', wav.toBuffer());
Alternatively, you can play the file in your browser (see below).
Don't like the speaker's voice? Well, you can choose another from the >7000 speaker embeddings in the CMU Arctic dataset (see here)!
Note: currently, we only support TTS w/ speecht5, but in future we'll add others like bark and MMS!
🖥️ TTS demo and example app
To showcase the power of in-browser TTS, we're also releasing a simple example app (demo, code). Feel free to make improvements to it... and if you do (or end up building your own), please tag me on Twitter! 🤗
TTS.demo.mp4
Misc. changes
- Update falcon tokenizer in #344
- Add more links to example section in #343
- Improve electron example template in #342
- Update example app dependencies in #347
- Do not post-process
<
and>
symbols generated from docs in #335
Full Changelog: 2.6.2...2.7.0
2.6.2
What's new?
📝 New task: Document Question Answering
Document Question Answering is the task of answering questions based on an image of a document. Document Question Answering models take a (document, question) pair as input and return an answer in natural language. Check out the docs for more info!
Example code
// npm i @xenova/transformers
import { pipeline } from '@xenova/transformers';
let image = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/invoice.png';
let question = 'What is the invoice number?';
// Create document question answering pipeline
let qa_pipeline = await pipeline('document-question-answering', 'Xenova/donut-base-finetuned-docvqa');
// Run the pipeline
let output = await qa_pipeline(image, question);
// [{ answer: 'us-001' }]
🤖 New models
- Add support for
DonutSwin
models in #320 - Add support for
Blenderbot
andBlenderbotSmall
in #292 - Add support for
LongT5
models #316
💻 New example application
🐛 Misc. improvements
- Fixing more
_call
LSP errors + extra typings by @kungfooman in #304 - Remove
CustomCache
requirement for example browser extension project in #325
Full Changelog: 2.6.1...2.6.2
2.6.1
What's new?
-
Add Vanilla JavaScript tutorial by @perborgen in #271. This includes an interactive video tutorial ("scrim"), which walks you through the code! Let us know if you want to see more of these video tutorials! 🤗
-
Add support for
min_length
andmin_new_tokens
generation parameters in #308 -
Fix issues with minification in #307
-
Fix
ByteLevel
pretokenizer and improve whisper test cases in #287 -
Misc. documentation improvements by @rubiagatra in #293
New Contributors
- @rubiagatra made their first contribution in #293
Full Changelog: 2.6.0...2.6.1
2.6.0
What's new?
🤯 14 new architectures
In this release, we've added a ton of new architectures: BLOOM, MPT, BeiT, CamemBERT, CodeLlama, GPT NeoX, GPT-J, HerBERT, mBART, mBART-50, OPT, ResNet, WavLM, and XLM. This brings the total number of supported architectures up to 46! Here's some example code to help you get started:
-
Text-generation with MPT (models):
import { pipeline } from '@xenova/transformers'; const generator = await pipeline('text-generation', 'Xenova/ipt-350m', { quantized: false, // using unquantized to ensure it matches python version }); const output = await generator('La nostra azienda'); // { generated_text: "La nostra azienda è specializzata nella vendita di prodotti per l'igiene orale e per la salute." }
Other text-generation models: BLOOM, GPT-NeoX, CodeLlama, GPT-J, OPT.
-
CamemBERT for masked language modelling, text classification, token classification, question answering, and feature extraction (models). For example:
import { pipeline } from '@xenova/transformers'; let pipe = await pipeline('token-classification', 'Xenova/camembert-ner-with-dates'); let output = await pipe("Je m'appelle jean-baptiste et j'habite à montréal depuis fevr 2012"); // [ // { entity: 'I-PER', score: 0.9258053302764893, index: 5, word: 'jean' }, // { entity: 'I-PER', score: 0.9048717617988586, index: 6, word: '-' }, // { entity: 'I-PER', score: 0.9227054119110107, index: 7, word: 'ba' }, // { entity: 'I-PER', score: 0.9385354518890381, index: 8, word: 'pt' }, // { entity: 'I-PER', score: 0.9139659404754639, index: 9, word: 'iste' }, // { entity: 'I-LOC', score: 0.9877734780311584, index: 15, word: 'montré' }, // { entity: 'I-LOC', score: 0.9891639351844788, index: 16, word: 'al' }, // { entity: 'I-DATE', score: 0.9858269691467285, index: 18, word: 'fe' }, // { entity: 'I-DATE', score: 0.9780661463737488, index: 19, word: 'vr' }, // { entity: 'I-DATE', score: 0.980688214302063, index: 20, word: '2012' } // ]
-
WavLM for feature-extraction (models). For example:
import { AutoProcessor, AutoModel, read_audio } from '@xenova/transformers'; // Read and preprocess audio const processor = await AutoProcessor.from_pretrained('Xenova/wavlm-base'); const audio = await read_audio('https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav', 16000); const inputs = await processor(audio); // Run model with inputs const model = await AutoModel.from_pretrained('Xenova/wavlm-base'); const output = await model(inputs); // { // last_hidden_state: Tensor { // dims: [ 1, 549, 768 ], // type: 'float32', // data: Float32Array(421632) [-0.349443256855011, -0.39341306686401367, 0.022836603224277496, ...], // size: 421632 // } // }
-
MBart +MBart50 for multilingual translation (models). For example:
import { pipeline } from '@xenova/transformers'; let translator = await pipeline('translation', 'Xenova/mbart-large-50-many-to-many-mmt'); let output = await translator('संयुक्त राष्ट्र के प्रमुख का कहना है कि सीरिया में कोई सैन्य समाधान नहीं है', { src_lang: 'hi_IN', // Hindi tgt_lang: 'fr_XX', // French }); // [{ translation_text: 'Le chef des Nations affirme qu 'il n 'y a military solution in Syria.' }]
See here for the full list of languages and their corresponding codes.
-
BeiT for image classification (models):
import { pipeline } from '@xenova/transformers'; let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg'; let pipe = await pipeline('image-classification', 'Xenova/beit-base-patch16-224'); let output = await pipe(url); // [{ label: 'tiger, Panthera tigris', score: 0.7168469429016113 }]
-
ResNet for image classification (models):
import { pipeline } from '@xenova/transformers'; let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg'; let pipe = await pipeline('image-classification', 'Xenova/resnet-50'); let output = await pipe(url); // [{ label: 'tiger, Panthera tigris', score: 0.7576608061790466 }]
😍 Over 150 newly-converted models
To get started with these new architectures (and expand coverage for other models), we're releasing over 150 new models on the Hugging Face Hub! Check out the full list here.
🏋️ HUGE reduction in model sizes (up to -40%)
Thanks to a recent update of 🤗 Optimum, we were able to remove duplicate weights across various models. In some cases, like whisper-tiny
's decoder, this resulted in a 40% reduction in size! Here are some improvements we saw:
- Whisper-tiny decoder: 50MB → 30MB (-40%)
- NLLB decoder: 732MB → 476MB (-35%)
- bloom: 819MB → 562MB (-31%)
- T5 decoder: 59MB → 42MB (-28%)
- distilbert-base: 91MB → 68MB (-25%)
- bart-base decoder: 207MB → 155MB (-25%)
- roberta-base: 165MB → 126MB (-24%)
- gpt2: 167MB → 127MB (-24%)
- bert-base: 134MB → 111MB (-17%)
- many more!
Play around with some of the smaller whisper models (for automatic speech recognition) here!
Other
-
Transformers.js integration with LangChain JS (docs)
import { HuggingFaceTransformersEmbeddings } from "langchain/embeddings/hf_transformers"; const model = new HuggingFaceTransformersEmbeddings({ modelName: "Xenova/all-MiniLM-L6-v2", }); /* Embed queries */ const res = await model.embedQuery( "What would be a good company name for a company that makes colorful socks?" ); console.log({ res }); /* Embed documents */ const documentRes = await model.embedDocuments(["Hello world", "Bye bye"]); console.log({ documentRes });
-
Refactored
PreTrainedModel
to require significantly less code when adding new models -
Typing improvements by @kungfooman
2.5.4
What's new?
- Add support for 3 new vision architectures (Swin, DeiT, Yolos) in #262. Check out the Hugging Face Hub to see which models you can use!
- Swin for image classification. e.g.:
let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg'; let classifier = await pipeline('image-classification', 'Xenova/swin-base-patch4-window7-224-in22k'); let output = await classifier(url, { topk: null }); // [ // { label: 'Bengal_tiger', score: 0.2258443683385849 }, // { label: 'tiger, Panthera_tigris', score: 0.21161635220050812 }, // { label: 'predator, predatory_animal', score: 0.09135803580284119 }, // { label: 'tigress', score: 0.08038495481014252 }, // // ... 21838 more items // ]
- DeiT for image classification. e.g.,:
let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg'; let classifier = await pipeline('image-classification', 'Xenova/deit-tiny-distilled-patch16-224'); let output = await classifier(url); // [{ label: 'tiger, Panthera tigris', score: 0.9804046154022217 }]
- Yolos for object detection. e.g.,:
let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg'; let detector = await pipeline('object-detection', 'Xenova/yolos-small-300'); let output = await detector(url); // [ // { label: 'remote', score: 0.9837935566902161, box: { xmin: 331, ymin: 80, xmax: 367, ymax: 192 } }, // { label: 'cat', score: 0.94994056224823, box: { xmin: 8, ymin: 57, xmax: 316, ymax: 470 } }, // { label: 'couch', score: 0.9843178987503052, box: { xmin: 0, ymin: 0, xmax: 639, ymax: 474 } }, // { label: 'remote', score: 0.9704685211181641, box: { xmin: 39, ymin: 71, xmax: 179, ymax: 114 } }, // { label: 'cat', score: 0.9921762943267822, box: { xmin: 339, ymin: 17, xmax: 642, ymax: 380 } } // ]
- Swin for image classification. e.g.:
- Documentation improvements by @perborgen in #261
New contributors 🤗
- @perborgen made their first contribution in #261
Full Changelog: 2.5.3...2.5.4
2.5.3
What's new?
- Fix whisper timestamps for non-English languages in #253
- Fix caching for some LFS files from the Hugging Face Hub in #251
- Improve documentation (w/ example code and links) in #255 and #257. Thanks @josephrocca for helping with this!
New contributors 🤗
- @josephrocca made their first contribution in #257
Full Changelog: 2.5.2...2.5.3
2.5.2
What's new?
- Add
audio-classification
with MMS and Wav2Vec2 in #220. Example usage:// npm i @xenova/transformers import { pipeline } from '@xenova/transformers'; // Create audio classification pipeline let classifier = await pipeline('audio-classification', 'Xenova/mms-lid-4017'); // Run inference let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jeanNL.wav'; let output = await classifier(url); // [ // { label: 'fra', score: 0.9995712041854858 }, // { label: 'hat', score: 0.00003788191679632291 }, // { label: 'lin', score: 0.00002646935718075838 }, // { label: 'hun', score: 0.000015628289474989288 }, // { label: 'bre', score: 0.000007014674793026643 } // ]
- Adds
automatic-speech-recognition
for Wav2Vec2 models in #220 (MMS coming soon). - Add support for multi-label classification problem type in #249. Thanks @KiterWork for reporting!
- Add M2M100 tokenizer in #250. Thanks @AAnirudh07 for the feature request!
- Documentation improvements
New Contributors
- @celsodias12 made their first contribution in #247
Full Changelog: 2.5.1...2.5.2
2.5.1
What's new?
- Add support for Llama/Llama2 models in #232
- Tokenization performance improvements in #234 (+ The Tokenizer Playground example app)
- Add support for DeBERTa/DeBERTa-v2 models in #244
- Documentation improvements for zero-shot-classification pipeline (link)
Full Changelog: 2.5.0...2.5.1
2.5.0
What's new?
Support for computing CLIP image and text embeddings separately (#227)
You can now compute CLIP text and vision embeddings separately, allowing for faster inference when you only need to query one of the modalities. We've also released a demo application for semantic image search to showcase this functionality.
Example: Compute text embeddings with CLIPTextModelWithProjection
.
import { AutoTokenizer, CLIPTextModelWithProjection } from '@xenova/transformers';
// Load tokenizer and text model
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/clip-vit-base-patch16');
const text_model = await CLIPTextModelWithProjection.from_pretrained('Xenova/clip-vit-base-patch16');
// Run tokenization
let texts = ['a photo of a car', 'a photo of a football match'];
let text_inputs = tokenizer(texts, { padding: true, truncation: true });
// Compute embeddings
const { text_embeds } = await text_model(text_inputs);
// Tensor {
// dims: [ 2, 512 ],
// type: 'float32',
// data: Float32Array(1024) [ ... ],
// size: 1024
// }
Example: Compute vision embeddings with CLIPVisionModelWithProjection
.
import { AutoProcessor, CLIPVisionModelWithProjection, RawImage} from '@xenova/transformers';
// Load processor and vision model
const processor = await AutoProcessor.from_pretrained('Xenova/clip-vit-base-patch16');
const vision_model = await CLIPVisionModelWithProjection.from_pretrained('Xenova/clip-vit-base-patch16');
// Read image and run processor
let image = await RawImage.read('https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg');
let image_inputs = await processor(image);
// Compute embeddings
const { image_embeds } = await vision_model(image_inputs);
// Tensor {
// dims: [ 1, 512 ],
// type: 'float32',
// data: Float32Array(512) [ ... ],
// size: 512
// }
Improved browser extension example/template (#196)
We've updated the source code for our example browser extension, making the following improvements:
- Custom model caching - meaning you don't need to ship the weights of the model with the extension. In addition to a smaller bundle size, when the user updates, they won't need to redownload the weights!
- Use ES6 module syntax (vs. CommonJS) - much cleaner code!
- Persistent service worker - fixed an issue where the service worker would go to sleep after a portion of inactivity.
Summary of updates since last minor release (2.4.0):
- (2.4.1) Improved documentation
- (2.4.2) Support for private/gated models (#202)
- (2.4.3) Example Next.js applications (#211) + MPNet model support (#221)
- (2.4.4) StarCoder models + example application (release; demo + source code)
Misc bug fixes and improvements
- Fixed floating-point-precision edge-case for resizing images
- Fixed
RawImage.save()
- BPE tokenization for weird whitespace characters (#208)
2.4.4
What's new?
-
New model: StarCoder (Xenova/starcoderbase-1b and Xenova/tiny_starcoder_py)
-
In-browser code completion example application (demo and source code)
Full Changelog: 2.4.3...2.4.4