-
Notifications
You must be signed in to change notification settings - Fork 901
/
Copy pathworker.js
137 lines (113 loc) · 3.56 KB
/
worker.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import {
AutoTokenizer,
AutoProcessor,
WhisperForConditionalGeneration,
TextStreamer,
full,
} from '@huggingface/transformers';
const MAX_NEW_TOKENS = 64;
/**
* This class uses the Singleton pattern to ensure that only one instance of the model is loaded.
*/
class AutomaticSpeechRecognitionPipeline {
static model_id = null;
static tokenizer = null;
static processor = null;
static model = null;
static async getInstance(progress_callback = null) {
this.model_id = 'onnx-community/whisper-base';
this.tokenizer ??= AutoTokenizer.from_pretrained(this.model_id, {
progress_callback,
});
this.processor ??= AutoProcessor.from_pretrained(this.model_id, {
progress_callback,
});
this.model ??= WhisperForConditionalGeneration.from_pretrained(this.model_id, {
dtype: {
encoder_model: 'fp32', // 'fp16' works too
decoder_model_merged: 'q4', // or 'fp32' ('fp16' is broken)
},
device: 'webgpu',
progress_callback,
});
return Promise.all([this.tokenizer, this.processor, this.model]);
}
}
let processing = false;
async function generate({ audio, language }) {
if (processing) return;
processing = true;
// Tell the main thread we are starting
self.postMessage({ status: 'start' });
// Retrieve the text-generation pipeline.
const [tokenizer, processor, model] = await AutomaticSpeechRecognitionPipeline.getInstance();
let startTime;
let numTokens = 0;
const callback_function = (output) => {
startTime ??= performance.now();
let tps = 0;
if (numTokens++ > 0) {
tps = numTokens / (performance.now() - startTime) * 1000;
}
self.postMessage({
status: 'update',
output, tps, numTokens,
});
}
const streamer = new TextStreamer(tokenizer, {
skip_prompt: true,
decode_kwargs: {
skip_special_tokens: true,
},
callback_function,
});
const inputs = await processor(audio);
const outputs = await model.generate({
...inputs,
max_new_tokens: MAX_NEW_TOKENS,
language,
streamer,
});
const outputText = tokenizer.batch_decode(outputs, { skip_special_tokens: true });
// Send the output back to the main thread
self.postMessage({
status: 'complete',
output: outputText,
});
processing = false;
}
async function load() {
self.postMessage({
status: 'loading',
data: 'Loading model...'
});
// Load the pipeline and save it for future use.
// eslint-disable-next-line no-unused-vars
const [tokenizer, processor, model] = await AutomaticSpeechRecognitionPipeline.getInstance(x => {
// We also add a progress callback to the pipeline so that we can
// track model loading.
self.postMessage(x);
});
self.postMessage({
status: 'loading',
data: 'Compiling shaders and warming up model...'
});
// Run model with dummy input to compile shaders
await model.generate({
input_features: full([1, 80, 3000], 0.0),
max_new_tokens: 1,
});
self.postMessage({ status: 'ready' });
}
// Listen for messages from the main thread
self.addEventListener('message', async (e) => {
const { type, data } = e.data;
switch (type) {
case 'load':
load();
break;
case 'generate':
generate(data);
break;
}
});