|
| 1 | +import torch |
| 2 | + |
| 3 | +class MultipleChoiceLossCompute: |
| 4 | + "A Loss compute and train function for multiple choice tasks." |
| 5 | + |
| 6 | + def __init__(self, lm_criterion, clf_criterion, lm_coef, opt=None): |
| 7 | + self.lm_criterion = lm_criterion |
| 8 | + self.clf_criterion = clf_criterion |
| 9 | + self.lm_coef = lm_coef |
| 10 | + self.opt = opt |
| 11 | + |
| 12 | + def __call__(self, X, Y, M, clf_logits, lm_logits=None, only_return_losses=False): |
| 13 | + # Language modeling loss |
| 14 | + if lm_logits is not None: |
| 15 | + x_shifted = X[:, :, 1:, 0].contiguous().view(-1) # Shape: 252 |
| 16 | + M = M.view(-1, M.size(2)) |
| 17 | + lm_losses = self.lm_criterion(lm_logits, x_shifted) |
| 18 | + lm_losses = lm_losses.view(X.size(0) * X.size(1), X.size(2) - 1) |
| 19 | + lm_losses = lm_losses * M[:, 1:] |
| 20 | + lm_losses = lm_losses.sum(1) / torch.sum(M[:, 1:], 1) |
| 21 | + # Classification loss |
| 22 | + clf_losses = self.clf_criterion(clf_logits, Y) |
| 23 | + if only_return_losses: |
| 24 | + return (clf_losses, lm_losses) if lm_logits is not None else clf_losses |
| 25 | + |
| 26 | + if self.lm_coef > 0 and lm_logits is not None: |
| 27 | + train_loss = clf_losses.sum() + self.lm_coef * lm_losses.sum() |
| 28 | + else: |
| 29 | + train_loss = clf_losses.sum() |
| 30 | + train_loss.backward() |
| 31 | + if self.opt is not None: |
| 32 | + self.opt.step() |
| 33 | + self.opt.zero_grad() |
| 34 | + return train_loss.item() |
| 35 | + |
| 36 | +class ClassificationLossCompute: |
| 37 | + "A Loss compute and train function for classification tasks." |
| 38 | + |
| 39 | + def __init__(self, lm_criterion, clf_criterion, lm_coef, opt=None): |
| 40 | + self.lm_criterion = lm_criterion |
| 41 | + self.clf_criterion = clf_criterion |
| 42 | + self.lm_coef = lm_coef |
| 43 | + self.opt = opt |
| 44 | + |
| 45 | + def __call__(self, X, Y, M, clf_logits, lm_logits=None, only_return_losses=False): |
| 46 | + # Language modeling loss |
| 47 | + if lm_logits is not None: |
| 48 | + x_shifted = X[:, 1:, 0].contiguous().view(-1) |
| 49 | + M = M.view(-1, M.size(-1)) |
| 50 | + lm_losses = self.lm_criterion(lm_logits, x_shifted) |
| 51 | + lm_losses = lm_losses.view(X.size(0), X.size(-2) - 1) |
| 52 | + lm_losses = lm_losses * M[:, 1:] |
| 53 | + lm_losses = lm_losses.sum(1) / torch.sum(M[:, 1:], 1) |
| 54 | + # Classification loss |
| 55 | + clf_losses = self.clf_criterion(clf_logits, Y) |
| 56 | + if only_return_losses: |
| 57 | + return (clf_losses, lm_losses) if lm_logits is not None else clf_losses |
| 58 | + |
| 59 | + if self.lm_coef > 0 and lm_logits is not None: |
| 60 | + train_loss = clf_losses.sum() + self.lm_coef * lm_losses.sum() |
| 61 | + else: |
| 62 | + train_loss = clf_losses.sum() |
| 63 | + train_loss.backward() |
| 64 | + if self.opt is not None: |
| 65 | + self.opt.step() |
| 66 | + self.opt.zero_grad() |
| 67 | + return train_loss.item() |
0 commit comments