@@ -818,30 +818,19 @@ def test_ovmodel_load_with_compressed_weights(self, model_cls, model_type, trust
818818 self .assertEqual (model ._openvino_config .quantization_config .bits , 8 )
819819 self .assertEqual (model ._openvino_config .dtype , "int8" )
820820
821- if model .export_feature .startswith ("text2text-generation" ):
822- models = [model .encoder , model .decoder ]
823- if model .decoder_with_past is not None :
824- models .append (model .decoder_with_past )
825- elif model .export_feature == "text-to-image" :
826- models = [model .unet , model .vae_encoder , model .vae_decoder ]
827- models .append (model .text_encoder if model_type in ["stable-diffusion" , "sana" ] else model .text_encoder_2 )
828- elif model_type == "open-clip" :
829- models = [model .text_model , model .visual_model ]
830- elif model .export_feature == "image-text-to-text" :
831- models = list (model .submodels .values ())
832- else :
833- models = [model ]
834-
835821 if model_type == "open-clip" :
836822 pytest .skip (reason = "ticket 161043" )
837823 elif model_type == "t5" :
838824 pytest .skip (reason = "ticket 160958" )
839825 else :
840826 check_optimization_not_applicable_to_optimized_model (model , quantization_config = {"bits" : 8 })
841827
828+ submodels = (
829+ [model .text_model , model .visual_model ] if model_type == "open-clip" else model .ov_submodels .values ()
830+ )
842831 expected_ov_int8 = _ARCHITECTURES_TO_EXPECTED_INT8 [model_type ]
843832 expected_ov_int8 = [{"int8" : it } for it in expected_ov_int8 ]
844- check_compression_state_per_model (self , models , expected_ov_int8 )
833+ check_compression_state_per_model (self , submodels , expected_ov_int8 )
845834
846835 @parameterized .expand (SUPPORTED_ARCHITECTURES_WITH_HYBRID_QUANTIZATION )
847836 def test_ovmodel_hybrid_quantization (self , model_cls , model_type , expected_fake_nodes , expected_int8_nodes ):
@@ -938,11 +927,7 @@ def test_ovmodel_4bit_auto_compression_with_config(
938927 # TODO: Check that AWQ was actually applied
939928 pass
940929
941- submodels = []
942- if isinstance (model , OVModelForCausalLM ):
943- submodels = [model .model ]
944- elif isinstance (model , OVModelForVisualCausalLM ):
945- submodels = list (model .submodels .values ())
930+ submodels = list (model .ov_submodels .values ())
946931 check_compression_state_per_model (self , submodels , expected_num_weight_nodes_per_model )
947932
948933 model .save_pretrained (tmp_dir )
@@ -976,21 +961,11 @@ def test_ovmodel_load_with_uncompressed_weights(self, model_cls, model_type, tru
976961 model = model_cls .from_pretrained (
977962 MODEL_NAMES [model_type ], export = True , load_in_8bit = False , trust_remote_code = trust_remote_code
978963 )
979- if model .export_feature .startswith ("text2text-generation" ):
980- models = [model .encoder , model .decoder ]
981- if model .decoder_with_past is not None :
982- models .append (model .decoder_with_past )
983- elif model .export_feature == "text-to-image" :
984- models = [model .unet , model .vae_encoder , model .vae_decoder ]
985- models .append (model .text_encoder if model_type in ["stable-diffusion" , "sana" ] else model .text_encoder_2 )
986- elif model_type == "open-clip" :
987- models = [model .text_model , model .visual_model ]
988- elif model .export_feature == "image-text-to-text" :
989- models = list (model .submodels .values ())
990- else :
991- models = [model ]
992964
993- for i , submodel in enumerate (models ):
965+ submodels = (
966+ [model .text_model , model .visual_model ] if model_type == "open-clip" else model .ov_submodels .values ()
967+ )
968+ for i , submodel in enumerate (submodels ):
994969 ov_model = submodel if isinstance (submodel , ov .Model ) else submodel .model
995970 _ , num_weight_nodes = get_num_quantized_nodes (ov_model )
996971 self .assertEqual (0 , num_weight_nodes ["int8" ])
@@ -1106,12 +1081,7 @@ def test_ovmodel_4bit_dynamic_with_config(
11061081 self .assertEqual (model .ov_config ["DYNAMIC_QUANTIZATION_GROUP_SIZE" ], str (group_size ))
11071082 self .assertEqual (model .ov_config ["KV_CACHE_PRECISION" ], "u8" )
11081083
1109- submodels = []
1110- if isinstance (model , OVModelForCausalLM ):
1111- submodels = [model .model ]
1112- elif isinstance (model , OVModelForVisualCausalLM ):
1113- submodels = list (model .submodels .values ())
1114- check_compression_state_per_model (self , submodels , expected_num_weight_nodes_per_model )
1084+ check_compression_state_per_model (self , model .ov_submodels .values (), expected_num_weight_nodes_per_model )
11151085
11161086 model .save_pretrained (tmp_dir )
11171087 openvino_config = OVConfig .from_pretrained (tmp_dir )
0 commit comments