diff --git a/README.md b/README.md index e363edb26e..e8fdf07116 100644 --- a/README.md +++ b/README.md @@ -299,6 +299,7 @@ The following model architectures, tasks and device distributions have been vali | FLUX.1 |
  • LoRA
  • |
  • Single card
  • |
  • [text-to-image generation](https://github.com/huggingface/optimum-habana/tree/main/examples/stable-diffusion#flux1)
  • [image-to-image generation](https://github.com/huggingface/optimum-habana/tree/main/examples/stable-diffusion#flux1-image-to-image)
  • | | Text to Video | |
  • Single card
  • |
  • [text-to-video generation](https://github.com/huggingface/optimum-habana/tree/main/examples/stable-diffusion#text-to-video-generation)
  • | | Image to Video | |
  • Single card
  • |
  • [image-to-video generation](https://github.com/huggingface/optimum-habana/tree/main/examples/stable-diffusion#image-to-video-generation)
  • | +| i2vgen-xl | |
  • Single card
  • |
  • [image-to-video generation](https://github.com/huggingface/optimum-habana/tree/main/examples/stable-diffusion#I2vgen-xl)
  • | ### PyTorch Image Models/TIMM: diff --git a/docs/source/index.mdx b/docs/source/index.mdx index 2b8cdf06ef..de2c9b9892 100644 --- a/docs/source/index.mdx +++ b/docs/source/index.mdx @@ -122,6 +122,7 @@ In the tables below, ✅ means single-card, multi-card and DeepSpeed have all be | LDM3D | |
  • Single card
  • |
  • [text-to-image generation](https://github.com/huggingface/optimum-habana/tree/main/examples/stable-diffusion)
  • | | FLUX.1 |
  • [fine-tuning](https://github.com/huggingface/optimum-habana/tree/main/examples/stable-diffusion/training#dreambooth-lora-fine-tuning-with-flux1-dev)
  • |
  • Single card
  • |
  • [text-to-image generation](https://github.com/huggingface/optimum-habana/tree/main/examples/stable-diffusion)
  • | | Text to Video | |
  • Single card
  • |
  • [text-to-video generation](https://github.com/huggingface/optimum-habana/tree/main/examples/stable-diffusion#text-to-video-generation)
  • | +| i2vgen-xl | |
  • Single card
  • |
  • [image-to-video generation](https://github.com/huggingface/optimum-habana/tree/main/examples/stable-diffusion#I2vgen-xl)
  • | - PyTorch Image Models/TIMM: diff --git a/examples/stable-diffusion/README.md b/examples/stable-diffusion/README.md index 98e818a5c6..9919780543 100644 --- a/examples/stable-diffusion/README.md +++ b/examples/stable-diffusion/README.md @@ -849,6 +849,31 @@ python image_to_video_generation.py \ --height=512 ``` +# I2vgen-xl +I2vgen-xl is high quality Image-to-Video synthesis via cascaded diffusion models. Please refer to [Huggingface i2vgen-xl doc](https://huggingface.co/ali-vilab/i2vgen-xl). + +Here is how to generate video with one image and text prompt: + +```bash +PT_HPU_MAX_COMPOUND_OP_SIZE=1 \ +python image_to_video_generation.py \ + --model_name_or_path "ali-vilab/i2vgen-xl" \ + --image_path "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0009.png" \ + --num_videos_per_prompt 1 \ + --video_save_dir ./i2vgen_xl \ + --num_inference_steps 50 \ + --use_habana \ + --use_hpu_graphs \ + --gaudi_config Habana/stable-diffusion \ + --gif \ + --num_frames 16 \ + --prompts "Papers were floating in the air on a table in the library" \ + --negative_prompts "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms" \ + --seed 8888 \ + --sdp_on_bf16 \ + --bf16 +``` + # Important Notes for Gaudi3 Users - **Batch Size Limitation**: Due to a known issue, batch sizes for some Stable Diffusion models need to be reduced. diff --git a/examples/stable-diffusion/image_to_video_generation.py b/examples/stable-diffusion/image_to_video_generation.py index bf5cdb5459..14a69f3072 100755 --- a/examples/stable-diffusion/image_to_video_generation.py +++ b/examples/stable-diffusion/image_to_video_generation.py @@ -19,9 +19,13 @@ from pathlib import Path import torch -from diffusers.utils import export_to_video, load_image +from diffusers.utils import export_to_gif, export_to_video, load_image -from optimum.habana.diffusers import GaudiEulerDiscreteScheduler, GaudiStableVideoDiffusionPipeline +from optimum.habana.diffusers import ( + GaudiEulerDiscreteScheduler, + GaudiI2VGenXLPipeline, + GaudiStableVideoDiffusionPipeline, +) from optimum.habana.utils import set_seed @@ -57,6 +61,20 @@ def main(): ) # Pipeline arguments + parser.add_argument( + "--prompts", + type=str, + nargs="*", + default="Papers were floating in the air on a table in the library", + help="The prompt or prompts to guide the image generation.", + ) + parser.add_argument( + "--negative_prompts", + type=str, + nargs="*", + default="Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms", + help="The prompt or prompts not to guide the image generation.", + ) parser.add_argument( "--image_path", type=str, @@ -177,6 +195,7 @@ def main(): ), ) parser.add_argument("--bf16", action="store_true", help="Whether to perform generation in bf16 precision.") + parser.add_argument("--gif", action="store_true", help="Whether to generate the video in gif format.") parser.add_argument( "--sdp_on_bf16", action="store_true", @@ -212,6 +231,9 @@ def main(): ) logger.setLevel(logging.INFO) + i2v_models = ["i2vgen-xl"] + is_i2v_model = any(model in args.model_name_or_path for model in i2v_models) + # Load input image(s) input = [] logger.info("Input image(s):") @@ -219,7 +241,10 @@ def main(): args.image_path = [args.image_path] for image_path in args.image_path: image = load_image(image_path) - image = image.resize((args.height, args.width)) + if is_i2v_model: + image = image.convert("RGB") + else: + image = image.resize((args.height, args.width)) input.append(image) logger.info(image_path) @@ -281,6 +306,24 @@ def main(): output_type=args.output_type, num_frames=args.num_frames, ) + elif is_i2v_model: + del kwargs["scheduler"] + pipeline = GaudiI2VGenXLPipeline.from_pretrained( + args.model_name_or_path, + **kwargs, + ) + generator = torch.manual_seed(args.seed) + outputs = pipeline( + prompt=args.prompts, + image=input, + num_videos_per_prompt=args.num_videos_per_prompt, + batch_size=args.batch_size, + num_frames=args.num_frames, + num_inference_steps=args.num_inference_steps, + negative_prompt=args.negative_prompts, + guidance_scale=9.0, + generator=generator, + ) else: pipeline = GaudiStableVideoDiffusionPipeline.from_pretrained( args.model_name_or_path, @@ -321,7 +364,11 @@ def main(): video_save_dir.mkdir(parents=True, exist_ok=True) logger.info(f"Saving video frames in {video_save_dir.resolve()}...") for i, frames in enumerate(outputs.frames): - export_to_video(frames, args.video_save_dir + "/gen_video_" + str(i).zfill(2) + ".mp4", fps=7) + if args.gif: + export_to_gif(frames, args.video_save_dir + "/gen_video_" + str(i).zfill(2) + ".gif") + else: + export_to_video(frames, args.video_save_dir + "/gen_video_" + str(i).zfill(2) + ".mp4", fps=7) + if args.save_frames_as_images: for j, frame in enumerate(frames): frame.save( diff --git a/optimum/habana/diffusers/__init__.py b/optimum/habana/diffusers/__init__.py index 86b6477c0b..bd4ceb45ee 100644 --- a/optimum/habana/diffusers/__init__.py +++ b/optimum/habana/diffusers/__init__.py @@ -6,6 +6,7 @@ from .pipelines.ddpm.pipeline_ddpm import GaudiDDPMPipeline from .pipelines.flux.pipeline_flux import GaudiFluxPipeline from .pipelines.flux.pipeline_flux_img2img import GaudiFluxImg2ImgPipeline +from .pipelines.i2vgen_xl.pipeline_i2vgen_xl import GaudiI2VGenXLPipeline from .pipelines.pipeline_utils import GaudiDiffusionPipeline from .pipelines.stable_diffusion.pipeline_stable_diffusion import GaudiStableDiffusionPipeline from .pipelines.stable_diffusion.pipeline_stable_diffusion_depth2img import GaudiStableDiffusionDepth2ImgPipeline diff --git a/optimum/habana/diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py b/optimum/habana/diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py new file mode 100644 index 0000000000..9528821520 --- /dev/null +++ b/optimum/habana/diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py @@ -0,0 +1,668 @@ +# Copyright 2024 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import time +from dataclasses import dataclass +from math import ceil +from typing import Any, Dict, List, Optional, Union + +import numpy as np +import PIL +import torch +from diffusers.image_processor import PipelineImageInput +from diffusers.models import AutoencoderKL +from diffusers.models.unets.unet_i2vgen_xl import I2VGenXLUNet +from diffusers.pipelines.i2vgen_xl.pipeline_i2vgen_xl import I2VGenXLPipeline, _center_crop_wide, _resize_bilinear +from diffusers.schedulers import DDIMScheduler +from diffusers.utils import ( + BaseOutput, + logging, + replace_example_docstring, +) +from diffusers.video_processor import VideoProcessor +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection + +from ....transformers.gaudi_configuration import GaudiConfig +from ....utils import HabanaProfile, speed_metrics, warmup_inference_steps_time_adjustment +from ...models.attention_processor import ( + AttnProcessor2_0, +) +from ..pipeline_utils import GaudiDiffusionPipeline + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> import torch + >>> from diffusers import I2VGenXLPipeline + >>> from diffusers.utils import export_to_gif, load_image + + >>> pipeline = GaudiI2VGenXLPipeline.from_pretrained( + ... "ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16" + ... ) + >>> pipeline.enable_model_cpu_offload() + + >>> image_url = ( + ... "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0009.png" + ... ) + >>> image = load_image(image_url).convert("RGB") + + >>> prompt = "Papers were floating in the air on a table in the library" + >>> negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms" + >>> generator = torch.manual_seed(8888) + + >>> frames = pipeline( + ... prompt=prompt, + ... image=image, + ... num_inference_steps=50, + ... negative_prompt=negative_prompt, + ... guidance_scale=9.0, + ... generator=generator, + ... ).frames[0] + >>> video_path = export_to_gif(frames, "i2v.gif") + ``` +""" + + +@dataclass +class GaudiI2VGenXLPipelineOutput(BaseOutput): + r""" + Output class for image-to-video pipeline. + Copied from https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py#L75 + - Add throughputs to the output class + Args: + frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): + List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing + denoised + PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape + `(batch_size, num_frames, channels, height, width)` + """ + + frames: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]] + throughput: float + + +class GaudiI2VGenXLPipeline( + GaudiDiffusionPipeline, + I2VGenXLPipeline, +): + r""" + Copied from https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py#L90 + - Use the GaudiDiffusionPipeline as the base class + - Add the GaudiI2VGenXLPipelineOutput as the output class + - Add the autocast into the __call__ method + - Modify the __init__ method to inherit from GaudiDiffusionPipeline + + Pipeline for image-to-video generation as proposed in [I2VGenXL](https://i2vgen-xl.github.io/). + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods + implemented for all pipelines (downloading, saving, running on a particular device, etc.). + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + text_encoder ([`CLIPTextModel`]): + Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). + tokenizer (`CLIPTokenizer`): + A [`~transformers.CLIPTokenizer`] to tokenize text. + unet ([`I2VGenXLUNet`]): + A [`I2VGenXLUNet`] to denoise the encoded video latents. + scheduler ([`DDIMScheduler`]): + A scheduler to be used in combination with `unet` to denoise the encoded image latents. + """ + + model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" + + def __init__( + self, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + tokenizer: CLIPTokenizer, + image_encoder: CLIPVisionModelWithProjection, + feature_extractor: CLIPImageProcessor, + unet: I2VGenXLUNet, + scheduler: DDIMScheduler, + use_habana: bool = False, + use_hpu_graphs: bool = False, + gaudi_config: Union[str, GaudiConfig] = None, + bf16_full_eval: bool = False, + sdp_on_bf16: bool = False, + ): + GaudiDiffusionPipeline.__init__( + self, + use_habana, + use_hpu_graphs, + gaudi_config, + bf16_full_eval, + sdp_on_bf16, + ) + + I2VGenXLPipeline.__init__( + self, + vae, + text_encoder, + tokenizer, + image_encoder, + feature_extractor, + unet, + scheduler, + ) + + if use_habana: + self.unet.set_attn_processor(AttnProcessor2_0()) + + if use_hpu_graphs: + from habana_frameworks.torch.hpu import wrap_in_hpu_graph + + self.unet = wrap_in_hpu_graph(self.unet, disable_tensor_cache=True) + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + tokenizer=tokenizer, + image_encoder=image_encoder, + feature_extractor=feature_extractor, + unet=unet, + scheduler=scheduler, + ) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + # `do_resize=False` as we do custom resizing. + self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor, do_resize=False) + self.to(self._device) + + @classmethod + def _split_and_cat_tensors(cls, batch_size, input_a, input_b=None, do_classifier_free_guidance=True): + if input_a is None: + return None, 0 + + input_a_batches = list(torch.split(input_a, batch_size)) + if input_b is not None: + input_b_batches = list(torch.split(input_b, batch_size)) + + num_dummy_samples = 0 + if input_a_batches[-1].shape[0] < batch_size: + num_dummy_samples = batch_size - input_a_batches[-1].shape[0] + # Pad input a + sequence_to_stack = (input_a_batches[-1],) + tuple( + torch.zeros_like(input_a_batches[-1][0][None, :]) for _ in range(num_dummy_samples) + ) + input_a_batches[-1] = torch.vstack(sequence_to_stack) + + if input_b is not None: + # Pad input a + sequence_to_stack = (input_b_batches[-1],) + tuple( + torch.zeros_like(input_b_batches[-1][0][None, :]) for _ in range(num_dummy_samples) + ) + input_b_batches[-1] = torch.vstack(sequence_to_stack) + + if input_b is not None and do_classifier_free_guidance: + # For classifier free guidance, we need to do two forward passes. + # Here we concatenate the unconditional and text embeddings into a single batch + # to avoid doing two forward passes + for i, (input_b_batch, input_a_batch) in enumerate(zip(input_b_batches, input_a_batches[:])): + input_a_batches[i] = torch.cat([input_b_batch, input_a_batch]) + + input_a_batches = torch.stack(input_a_batches) + return input_a_batches, num_dummy_samples + + """Copied from https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py#L320 + - Commented out the code for do_classifier_free_guidance + """ + + def _encode_image(self, image, device, num_videos_per_prompt): + dtype = next(self.image_encoder.parameters()).dtype + + if not isinstance(image, torch.Tensor): + image = self.video_processor.pil_to_numpy(image) + image = self.video_processor.numpy_to_pt(image) + + # Normalize the image with CLIP training stats. + image = self.feature_extractor( + images=image, + do_normalize=True, + do_center_crop=False, + do_resize=False, + do_rescale=False, + return_tensors="pt", + ).pixel_values + + image = image.to(device=device, dtype=dtype) + image_embeddings = self.image_encoder(image).image_embeds + image_embeddings = image_embeddings.unsqueeze(1) + + # duplicate image embeddings for each generation per prompt, using mps friendly method + bs_embed, seq_len, _ = image_embeddings.shape + image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1) + image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) + + # if self.do_classifier_free_guidance: + # negative_image_embeddings = torch.zeros_like(image_embeddings) + # image_embeddings = torch.cat([negative_image_embeddings, image_embeddings]) + + return image_embeddings + + """Copied from https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py#L441 + - Commented out the code for do_classifier_free_guidance + """ + + def prepare_image_latents( + self, + image, + device, + num_frames, + num_videos_per_prompt, + ): + image = image.to(device=device) + image_latents = self.vae.encode(image).latent_dist.sample() + image_latents = image_latents * self.vae.config.scaling_factor + + # Add frames dimension to image latents + image_latents = image_latents.unsqueeze(2) + + # Append a position mask for each subsequent frame + # after the intial image latent frame + frame_position_mask = [] + for frame_idx in range(num_frames - 1): + scale = (frame_idx + 1) / (num_frames - 1) + frame_position_mask.append(torch.ones_like(image_latents[:, :, :1]) * scale) + if frame_position_mask: + frame_position_mask = torch.cat(frame_position_mask, dim=2) + image_latents = torch.cat([image_latents, frame_position_mask], dim=2) + + # duplicate image_latents for each generation per prompt, using mps friendly method + image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1, 1) + + # if self.do_classifier_free_guidance: + # image_latents = torch.cat([image_latents] * 2) + + return image_latents + + """Copied from https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py#L501 + - Add the autocast + - Add the batching support + - Add the throughput calculation + """ + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + image: PipelineImageInput = None, + height: Optional[int] = 704, + width: Optional[int] = 1280, + target_fps: Optional[int] = 16, + num_frames: int = 16, + num_inference_steps: int = 50, + guidance_scale: float = 9.0, + negative_prompt: Optional[Union[str, List[str]]] = None, + eta: float = 0.0, + num_videos_per_prompt: Optional[int] = 1, + decode_chunk_size: Optional[int] = 1, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.Tensor] = None, + prompt_embeds: Optional[torch.Tensor] = None, + negative_prompt_embeds: Optional[torch.Tensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + clip_skip: Optional[int] = 1, + batch_size: int = 1, + profiling_warmup_steps: Optional[int] = 0, + profiling_steps: Optional[int] = 0, + **kwargs, + ): + r""" + The call function to the pipeline for image-to-video generation with [`I2VGenXLPipeline`]. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. + image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.Tensor`): + Image or images to guide image generation. If you provide a tensor, it needs to be compatible with + [`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json). + height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The width in pixels of the generated image. + target_fps (`int`, *optional*): + Frames per second. The rate at which the generated images shall be exported to a video after + generation. This is also used as a "micro-condition" while generation. + num_frames (`int`, *optional*): + The number of video frames to generate. + num_inference_steps (`int`, *optional*): + The number of denoising steps. + guidance_scale (`float`, *optional*, defaults to 7.5): + A higher guidance scale value encourages the model to generate images closely linked to the text + `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide what to not include in image generation. If not defined, you need to + pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). + eta (`float`, *optional*): + Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies + to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. + num_videos_per_prompt (`int`, *optional*): + The number of images to generate per prompt. + decode_chunk_size (`int`, *optional*): + The number of frames to decode at a time. The higher the chunk size, the higher the temporal + consistency between frames, but also the higher the memory consumption. By default, the decoder will + decode all frames at once for maximal quality. Reduce `decode_chunk_size` to reduce memory usage. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make + generation deterministic. + latents (`torch.Tensor`, *optional*): + Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor is generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not + provided, text embeddings are generated from the `prompt` input argument. + negative_prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If + not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generated image. Choose between `PIL.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a + plain tuple. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in + [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + clip_skip (`int`, *optional*): + Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that + the output of the pre-final layer will be used for computing the prompt embeddings. + batch_size (`int`, *optional*, defaults to 1): + The number of videos in a batch. + + Examples: + + Returns: + [`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] or `tuple`: + If `return_dict` is `True`, [`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] is + returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. + """ + with torch.autocast(device_type="hpu", dtype=torch.bfloat16, enabled=self.gaudi_config.use_torch_autocast): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + + # 1. Check inputs. Raise error if not correct + self.check_inputs(prompt, image, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds) + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + num_prompts = 1 + elif prompt is not None and isinstance(prompt, list): + num_prompts = len(prompt) + else: + num_prompts = prompt_embeds.shape[0] + + num_batches = ceil((num_videos_per_prompt * num_prompts) / batch_size) + logger.info( + f"{num_prompts} prompt(s) received, {num_videos_per_prompt} generation(s) per prompt," + f" {batch_size} sample(s) per batch, {num_batches} total batch(es)." + ) + if num_batches < 3: + logger.warning("The first two iterations are slower so it is recommended to feed more batches.") + + device = self._execution_device + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + self._guidance_scale = guidance_scale + + # 3.1 Encode input text prompt + prompt_embeds, negative_prompt_embeds = self.encode_prompt( + prompt, + device, + num_videos_per_prompt, + negative_prompt, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + clip_skip=clip_skip, + ) + # For classifier free guidance, we need to do two forward passes. + # Here we concatenate the unconditional and text embeddings into a single batch + # to avoid doing two forward passes + # if self.do_classifier_free_guidance: + # prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + + # 3.2 Encode image prompt + # 3.2.1 Image encodings. + # https://github.com/ali-vilab/i2vgen-xl/blob/2539c9262ff8a2a22fa9daecbfd13f0a2dbc32d0/tools/inferences/inference_i2vgen_entrance.py#L114 + cropped_image = _center_crop_wide(image, (width, width)) + cropped_image = _resize_bilinear( + cropped_image, (self.feature_extractor.crop_size["width"], self.feature_extractor.crop_size["height"]) + ) + image_embeddings = self._encode_image(cropped_image, device, num_videos_per_prompt) + + # 3.2.2 Image latents. + resized_image = _center_crop_wide(image, (width, height)) + image = self.video_processor.preprocess(resized_image).to(device=device) + needs_upcasting = ( + self.vae.dtype == torch.float16 or self.vae.dtype == torch.bfloat16 + ) and self.vae.config.force_upcast + + if needs_upcasting: + cast_dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + + image_latents = self.prepare_image_latents( + image, + device=device, + num_frames=num_frames, + num_videos_per_prompt=num_videos_per_prompt, + ) + image_latents = image_latents.to(image_embeddings.dtype) + + # cast back to fp16/bf16 if needed + if needs_upcasting: + self.vae.to(dtype=cast_dtype) + + # 3.3 Prepare additional conditions for the UNet. + # if self.do_classifier_free_guidance: + # fps_tensor = torch.tensor([target_fps, target_fps]).to(device) + # else: + fps_tensor = torch.tensor([target_fps]).to(device) + fps_tensor = fps_tensor.repeat(num_prompts * num_videos_per_prompt, 1).ravel() + + # 4. Prepare timesteps + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + + # 5. Prepare latent variables + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents( + num_prompts * num_videos_per_prompt, + num_channels_latents, + num_frames, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 7 Split into batches (HPU-specific step) + latents_batches, num_dummy_samples = self._split_and_cat_tensors(batch_size, latents) + prompt_embeds_batches, _ = self._split_and_cat_tensors( + batch_size, prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance + ) + image_latents_batches, _ = self._split_and_cat_tensors( + batch_size, image_latents, image_latents, self.do_classifier_free_guidance + ) + image_embeddings_batches, _ = self._split_and_cat_tensors( + batch_size, image_embeddings, torch.zeros_like(image_embeddings), self.do_classifier_free_guidance + ) + fps_tensor_batches, _ = self._split_and_cat_tensors( + batch_size, fps_tensor, fps_tensor, self.do_classifier_free_guidance + ) + + # 8. Denoising loop + throughput_warmup_steps = kwargs.get("throughput_warmup_steps", 3) + use_warmup_inference_steps = ( + num_batches <= throughput_warmup_steps and num_inference_steps > throughput_warmup_steps + ) + + outputs = { + "videos": [], + } + t0 = time.time() + t1 = t0 + + hb_profiler = HabanaProfile( + warmup=profiling_warmup_steps, + active=profiling_steps, + record_shapes=False, + ) + hb_profiler.start() + + for j in self.progress_bar(range(num_batches)): + # The throughput is calculated from the 3rd iteration + # because compilation occurs in the first two iterations + if j == throughput_warmup_steps: + t1 = time.time() + if use_warmup_inference_steps: + t0_inf = time.time() + + latents_batch = latents_batches[0] + latents_batches = torch.roll(latents_batches, shifts=-1, dims=0) + prompt_embeds_batch = prompt_embeds_batches[0] + prompt_embeds_batches = torch.roll(prompt_embeds_batches, shifts=-1, dims=0) + fps_tensor_batch = fps_tensor_batches[0] + fps_tensor_batches = torch.roll(fps_tensor_batches, shifts=-1, dims=0) + image_latents_batch = image_latents_batches[0] + image_latents_batches = torch.roll(image_latents_batches, shifts=-1, dims=0) + image_embeddings_batch = image_embeddings_batches[0] + image_embeddings_batches = torch.roll(image_embeddings_batches, shifts=-1, dims=0) + + if hasattr(self.scheduler, "_init_step_index"): + # Reset scheduler step index for next batch + self.scheduler._init_step_index(timesteps[0]) + + for i in self.progress_bar(range(len(timesteps))): + if use_warmup_inference_steps and i == throughput_warmup_steps: + t1_inf = time.time() + t1 += t1_inf - t0_inf + + # expand the latents if we are doing classifier free guidance + t = timesteps[0] + timesteps = torch.roll(timesteps, shifts=-1, dims=0) + + latent_model_input = ( + torch.cat([latents_batch] * 2) if self.do_classifier_free_guidance else latents_batch + ) + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + # predict the noise residual + noise_pred = self.unet( + latent_model_input, + t, + encoder_hidden_states=prompt_embeds_batch, + fps=fps_tensor_batch, + image_latents=image_latents_batch, + image_embeddings=image_embeddings_batch, + cross_attention_kwargs=cross_attention_kwargs, + return_dict=False, + )[0] + + # perform guidance + if self.do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + # reshape latents + bs, channel, frames, width, height = latents_batch.shape + latents_batch = latents_batch.permute(0, 2, 1, 3, 4).reshape(bs * frames, channel, width, height) + noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bs * frames, channel, width, height) + + # compute the previous noisy sample x_t -> x_t-1 + latents_batch = self.scheduler.step(noise_pred, t, latents_batch, **extra_step_kwargs).prev_sample + + # reshape latents back + latents_batch = ( + latents_batch[None, :].reshape(bs, frames, channel, width, height).permute(0, 2, 1, 3, 4) + ) + # call the callback, if provided + # if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + # self.progress_bar.update() + + hb_profiler.step() + + if use_warmup_inference_steps: + t1 = warmup_inference_steps_time_adjustment( + t1, t1_inf, num_inference_steps, throughput_warmup_steps + ) + + # 8. Post processing + if output_type == "latent": + video = latents_batch + else: + # cast back to fp16/bf16 if needed + if needs_upcasting: + self.vae.to(dtype=cast_dtype) + + video_tensor = self.decode_latents(latents_batch, decode_chunk_size=decode_chunk_size) + video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) + + outputs["videos"].append(video) + + if not self.use_hpu_graphs: + self.htcore.mark_step() + + hb_profiler.stop() + speed_metrics_prefix = "generation" + speed_measures = speed_metrics( + split=speed_metrics_prefix, + start_time=t0, + num_samples=num_batches * batch_size + if t1 == t0 or use_warmup_inference_steps + else (num_batches - throughput_warmup_steps) * batch_size, + num_steps=num_batches * batch_size * num_inference_steps, + start_time_after_warmup=t1, + ) + logger.info(f"Speed metrics: {speed_measures}") + + # Remove dummy generations if needed + if num_dummy_samples > 0: + outputs["videos"][-1] = outputs["videos"][-1][:-num_dummy_samples] + + # Process generated images + for i, video in enumerate(outputs["videos"][:]): + if i == 0: + outputs["videos"].clear() + + if output_type == "pil": + outputs["videos"] += video + elif output_type in ["np", "numpy"] and isinstance(video, np.ndarray): + if len(outputs["videos"]) == 0: + outputs["videos"] = video + else: + outputs["videos"] = np.concatenate((outputs["videos"], video), axis=0) + else: + outputs["videos"] += [*video] + + # 9. Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return outputs["videos"] + + return GaudiI2VGenXLPipelineOutput( + frames=outputs["videos"], + throughput=speed_measures[f"{speed_metrics_prefix}_samples_per_second"], + ) diff --git a/tests/test_diffusers.py b/tests/test_diffusers.py index 98ed90d55b..396dc8f35e 100644 --- a/tests/test_diffusers.py +++ b/tests/test_diffusers.py @@ -47,6 +47,7 @@ EulerDiscreteScheduler, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel, + I2VGenXLUNet, LCMScheduler, PNDMScheduler, SD3Transformer2DModel, @@ -66,6 +67,7 @@ enable_full_determinism, floats_tensor, load_image, + numpy_cosine_similarity_distance, require_torch, ) from diffusers.utils.torch_utils import randn_tensor @@ -98,6 +100,7 @@ GaudiEulerDiscreteScheduler, GaudiFluxImg2ImgPipeline, GaudiFluxPipeline, + GaudiI2VGenXLPipeline, GaudiStableDiffusion3Pipeline, GaudiStableDiffusionControlNetPipeline, GaudiStableDiffusionDepth2ImgPipeline, @@ -144,6 +147,7 @@ SD3_THROUGHPUT = 0.006 FLUX_THROUGHPUT = 0.03 FLUX_DEV_I2I_THROUGHPUT = 0.12 + I2V_THROUGHPUT = 0.017 else: THROUGHPUT_BASELINE_BF16 = 0.275 THROUGHPUT_BASELINE_AUTOCAST = 0.114 @@ -158,6 +162,7 @@ THROUGHPUT_UNCONDITIONAL_IMAGE_BASELINE_BF16 = 0.045 SDXL_THROUGHPUT = 0.074 SVD_THROUGHPUT = 0.012 + I2V_THROUGHPUT = 0.008 _run_custom_bf16_ops_test_ = parse_flag_from_env("CUSTOM_BF16_OPS", default=False) @@ -6179,3 +6184,209 @@ def test_flux_img2img_inference(self): # Check expected performance of FLUX.1 dev img-to-img model self.assertGreaterEqual(outputs.throughput, 0.95 * FLUX_DEV_I2I_THROUGHPUT) + + +class I2VGenXLPipelineTests(TestCase): + pipeline_class = GaudiI2VGenXLPipeline + params = frozenset(["prompt", "negative_prompt", "image"]) + batch_params = frozenset(["prompt", "negative_prompt", "image", "generator"]) + # No `output_type`. + required_optional_params = frozenset(["num_inference_steps", "generator", "latents", "return_dict"]) + + supports_dduf = False + test_layerwise_casting = True + + def get_dummy_components(self): + torch.manual_seed(0) + scheduler = GaudiDDIMScheduler( + beta_start=0.00085, + beta_end=0.012, + beta_schedule="scaled_linear", + clip_sample=False, + set_alpha_to_one=False, + ) + + torch.manual_seed(0) + unet = I2VGenXLUNet( + block_out_channels=(4, 8), + layers_per_block=1, + sample_size=32, + in_channels=4, + out_channels=4, + down_block_types=("CrossAttnDownBlock3D", "DownBlock3D"), + up_block_types=("UpBlock3D", "CrossAttnUpBlock3D"), + cross_attention_dim=4, + attention_head_dim=4, + num_attention_heads=None, + norm_num_groups=2, + ) + + torch.manual_seed(0) + vae = AutoencoderKL( + block_out_channels=(8,), + in_channels=3, + out_channels=3, + down_block_types=["DownEncoderBlock2D"], + up_block_types=["UpDecoderBlock2D"], + latent_channels=4, + sample_size=32, + norm_num_groups=2, + ) + torch.manual_seed(0) + text_encoder_config = CLIPTextConfig( + bos_token_id=0, + eos_token_id=2, + hidden_size=4, + intermediate_size=16, + layer_norm_eps=1e-05, + num_attention_heads=2, + num_hidden_layers=2, + pad_token_id=1, + vocab_size=1000, + hidden_act="gelu", + projection_dim=32, + ) + text_encoder = CLIPTextModel(text_encoder_config) + tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") + + torch.manual_seed(0) + vision_encoder_config = CLIPVisionConfig( + hidden_size=4, + projection_dim=4, + num_hidden_layers=2, + num_attention_heads=2, + image_size=32, + intermediate_size=16, + patch_size=1, + ) + image_encoder = CLIPVisionModelWithProjection(vision_encoder_config) + + torch.manual_seed(0) + feature_extractor = CLIPImageProcessor(crop_size=32, size=32) + + components = { + "unet": unet, + "scheduler": scheduler, + "vae": vae, + "text_encoder": text_encoder, + "image_encoder": image_encoder, + "tokenizer": tokenizer, + "feature_extractor": feature_extractor, + "use_habana": True, + "use_hpu_graphs": True, + "gaudi_config": "Habana/stable-diffusion", + } + return components + + def get_dummy_inputs(self, device, seed=0): + if str(device).startswith("mps"): + generator = torch.manual_seed(seed) + else: + generator = torch.Generator(device=device).manual_seed(seed) + + input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) + inputs = { + "prompt": "A painting of a squirrel eating a burger", + "image": input_image, + "generator": generator, + "num_inference_steps": 2, + "guidance_scale": 6.0, + "output_type": "pt", + "num_frames": 4, + "width": 32, + "height": 32, + } + return inputs + + def test_cfg(self): + sig = inspect.signature(self.pipeline_class.__call__) + + if "guidance_scale" not in sig.parameters: + return + + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + pipe.set_progress_bar_config(disable=None) + + inputs = self.get_dummy_inputs(device="cpu") + + inputs["guidance_scale"] = 1.0 + out_no_cfg = pipe(**inputs)[0] + + inputs["guidance_scale"] = 7.5 + out_cfg = pipe(**inputs)[0] + + assert out_cfg[0].shape == out_no_cfg[0].shape + + def test_text_to_video_default_case(self): + device = "cpu" # ensure determinism for the device-dependent torch.Generator + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + pipe.set_progress_bar_config(disable=None) + + inputs = self.get_dummy_inputs(device) + inputs["output_type"] = "np" + frames = pipe(**inputs).frames + + image_slice = frames[0][0][-3:, -3:, -1] + + assert frames[0][0].shape == (32, 32, 3) + expected_slice = np.array([0.5146, 0.6525, 0.6032, 0.5204, 0.5675, 0.4125, 0.3016, 0.5172, 0.4095]) + + assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 + + def test_num_videos_per_prompt(self): + device = "cpu" # ensure determinism for the device-dependent torch.Generator + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + pipe.set_progress_bar_config(disable=None) + + inputs = self.get_dummy_inputs(device) + inputs["output_type"] = "np" + frames = pipe(**inputs, num_videos_per_prompt=2).frames + + assert frames.shape == (2, 4, 32, 32, 3) + assert frames[0][0].shape == (32, 32, 3) + + image_slice = frames[0][0][-3:, -3:, -1] + expected_slice = np.array([0.5146, 0.6525, 0.6032, 0.5204, 0.5675, 0.4125, 0.3016, 0.5172, 0.4095]) + + assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 + + @slow + def test_i2vgen_xl_bf16(self): + pipe = GaudiI2VGenXLPipeline.from_pretrained( + "ali-vilab/i2vgen-xl", + use_habana=True, + use_hpu_graphs=True, + gaudi_config=GaudiConfig.from_pretrained("Habana/stable-diffusion"), + sdp_on_bf16=True, + torch_dtype=torch.bfloat16, + ) + pipe.enable_model_cpu_offload(device=torch_device) + pipe.set_progress_bar_config(disable=None) + image = load_image( + "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png?download=true" + ) + + generator = torch.Generator("cpu").manual_seed(0) + num_frames = 3 + + output = pipe( + image=image, + prompt="my cat", + num_frames=num_frames, + generator=generator, + num_inference_steps=50, + output_type="np", + ) + + image = output.frames[0] + assert image.shape == (num_frames, 704, 1280, 3) + + image_slice = image[0, -3:, -3:, -1] + expected_slice = np.array( + [0.44921875, 0.3642578, 0.38671875, 0.46484375, 0.41210938, 0.45874023, 0.49536133, 0.4387207, 0.48242188] + ) + assert numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice.flatten()) < 1e-3 + self.assertGreaterEqual(output.throughput, 0.95 * I2V_THROUGHPUT)