You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<figcaption class="mt-2 text-sm text-center text-gray-500">IP-Adapter examples with prompt "wearing sunglasses"</figcaption>
360
360
</div>
361
361
362
+
## Optimize
362
363
363
-
## Running FP16 inference
364
+
Flux is a very large model and requires ~50GB of RAM/VRAM to load all the modeling components. Enable some of the optimizations below to lower the memory requirements.
365
+
366
+
### Group offloading
367
+
368
+
[Group offloading](../../optimization/memory#group-offloading) lowers VRAM usage by offloading groups of internal layers rather than the whole model or weights. You need to use [`~hooks.apply_group_offloading`] on all the model components of a pipeline. The `offload_type` parameter allows you to toggle between block and leaf-level offloading. Setting it to `leaf_level` offloads the lowest leaf-level parameters to the CPU instead of offloading at the module-level.
369
+
370
+
On CUDA devices that support asynchronous data streaming, set `use_stream=True` to overlap data transfer and computation to accelerate inference.
371
+
372
+
> [!TIP]
373
+
> It is possible to mix block and leaf-level offloading for different components in a pipeline.
374
+
375
+
```py
376
+
import torch
377
+
from diffusers import FluxPipeline
378
+
from diffusers.hooks import apply_group_offloading
379
+
380
+
model_id ="black-forest-labs/FLUX.1-dev"
381
+
dtype = torch.bfloat16
382
+
pipe = FluxPipeline.from_pretrained(
383
+
model_id,
384
+
torch_dtype=dtype,
385
+
)
386
+
387
+
apply_group_offloading(
388
+
pipe.transformer,
389
+
offload_type="leaf_level",
390
+
offload_device=torch.device("cpu"),
391
+
onload_device=torch.device("cuda"),
392
+
use_stream=True,
393
+
)
394
+
apply_group_offloading(
395
+
pipe.text_encoder,
396
+
offload_device=torch.device("cpu"),
397
+
onload_device=torch.device("cuda"),
398
+
offload_type="leaf_level",
399
+
use_stream=True,
400
+
)
401
+
apply_group_offloading(
402
+
pipe.text_encoder_2,
403
+
offload_device=torch.device("cpu"),
404
+
onload_device=torch.device("cuda"),
405
+
offload_type="leaf_level",
406
+
use_stream=True,
407
+
)
408
+
apply_group_offloading(
409
+
pipe.vae,
410
+
offload_device=torch.device("cpu"),
411
+
onload_device=torch.device("cuda"),
412
+
offload_type="leaf_level",
413
+
use_stream=True,
414
+
)
415
+
416
+
prompt="A cat wearing sunglasses and working as a lifeguard at pool."
417
+
418
+
generator = torch.Generator().manual_seed(181201)
419
+
image = pipe(
420
+
prompt,
421
+
width=576,
422
+
height=1024,
423
+
num_inference_steps=30,
424
+
generator=generator
425
+
).images[0]
426
+
image
427
+
```
428
+
429
+
### Running FP16 inference
364
430
365
431
Flux can generate high-quality images with FP16 (i.e. to accelerate inference on Turing/Volta GPUs) but produces different outputs compared to FP32/BF16. The issue is that some activations in the text encoders have to be clipped when running in FP16, which affects the overall image. Forcing text encoders to run with FP32 inference thus removes this output difference. See [here](https://github.com/huggingface/diffusers/pull/9097#issuecomment-2272292516) for details.
366
432
@@ -389,7 +455,7 @@ out = pipe(
389
455
out.save("image.png")
390
456
```
391
457
392
-
## Quantization
458
+
###Quantization
393
459
394
460
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
0 commit comments