@@ -774,8 +774,6 @@ def __call__(
774
774
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
775
775
# corresponds to doing no classifier free guidance.
776
776
do_classifier_free_guidance = guidance_scale > 1.0 and image_guidance_scale >= 1.0
777
- # check if scheduler is in sigmas space
778
- scheduler_is_in_sigma_space = hasattr (self .scheduler , "sigmas" )
779
777
780
778
# 3. Encode input prompt
781
779
text_encoder_lora_scale = (
@@ -906,15 +904,6 @@ def __call__(
906
904
return_dict = False ,
907
905
)[0 ]
908
906
909
- # Hack:
910
- # For karras style schedulers the model does classifer free guidance using the
911
- # predicted_original_sample instead of the noise_pred. So we need to compute the
912
- # predicted_original_sample here if we are using a karras style scheduler.
913
- if scheduler_is_in_sigma_space :
914
- step_index = (self .scheduler .timesteps == t ).nonzero ()[0 ].item ()
915
- sigma = self .scheduler .sigmas [step_index ]
916
- noise_pred = latent_model_input - sigma * noise_pred
917
-
918
907
# perform guidance
919
908
if do_classifier_free_guidance :
920
909
noise_pred_text , noise_pred_image , noise_pred_uncond = noise_pred .chunk (3 )
@@ -928,15 +917,6 @@ def __call__(
928
917
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
929
918
noise_pred = rescale_noise_cfg (noise_pred , noise_pred_text , guidance_rescale = guidance_rescale )
930
919
931
- # Hack:
932
- # For karras style schedulers the model does classifer free guidance using the
933
- # predicted_original_sample instead of the noise_pred. But the scheduler.step function
934
- # expects the noise_pred and computes the predicted_original_sample internally. So we
935
- # need to overwrite the noise_pred here such that the value of the computed
936
- # predicted_original_sample is correct.
937
- if scheduler_is_in_sigma_space :
938
- noise_pred = (noise_pred - latents ) / (- sigma )
939
-
940
920
# compute the previous noisy sample x_t -> x_t-1
941
921
latents = self .scheduler .step (noise_pred , t , latents , ** extra_step_kwargs , return_dict = False )[0 ]
942
922
0 commit comments