|
| 1 | +#[cfg(feature = "mkl")] |
| 2 | +extern crate intel_mkl_src; |
| 3 | + |
| 4 | +#[cfg(feature = "accelerate")] |
| 5 | +extern crate accelerate_src; |
| 6 | + |
| 7 | +use anyhow::{Error as E, Result}; |
| 8 | +use clap::Parser; |
| 9 | + |
| 10 | +use candle_transformers::models::deepseek2::{DeepSeekV2, DeepSeekV2Config}; |
| 11 | + |
| 12 | +use candle::{DType, Device, Tensor}; |
| 13 | +use candle_examples::token_output_stream::TokenOutputStream; |
| 14 | +use candle_nn::VarBuilder; |
| 15 | +use candle_transformers::generation::{LogitsProcessor, Sampling}; |
| 16 | +use hf_hub::{api::sync::Api, Repo, RepoType}; |
| 17 | +use tokenizers::Tokenizer; |
| 18 | + |
| 19 | +struct TextGeneration { |
| 20 | + model: DeepSeekV2, |
| 21 | + device: Device, |
| 22 | + tokenizer: TokenOutputStream, |
| 23 | + logits_processor: LogitsProcessor, |
| 24 | + repeat_penalty: f32, |
| 25 | + repeat_last_n: usize, |
| 26 | +} |
| 27 | + |
| 28 | +impl TextGeneration { |
| 29 | + #[allow(clippy::too_many_arguments)] |
| 30 | + fn new( |
| 31 | + model: DeepSeekV2, |
| 32 | + tokenizer: Tokenizer, |
| 33 | + seed: u64, |
| 34 | + temp: Option<f64>, |
| 35 | + top_p: Option<f64>, |
| 36 | + top_k: Option<usize>, |
| 37 | + repeat_penalty: f32, |
| 38 | + repeat_last_n: usize, |
| 39 | + device: &Device, |
| 40 | + ) -> Self { |
| 41 | + let logits_processor = { |
| 42 | + let temperature = temp.unwrap_or(0.); |
| 43 | + let sampling = if temperature <= 0. { |
| 44 | + Sampling::ArgMax |
| 45 | + } else { |
| 46 | + match (top_k, top_p) { |
| 47 | + (None, None) => Sampling::All { temperature }, |
| 48 | + (Some(k), None) => Sampling::TopK { k, temperature }, |
| 49 | + (None, Some(p)) => Sampling::TopP { p, temperature }, |
| 50 | + (Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature }, |
| 51 | + } |
| 52 | + }; |
| 53 | + LogitsProcessor::from_sampling(seed, sampling) |
| 54 | + }; |
| 55 | + |
| 56 | + Self { |
| 57 | + model, |
| 58 | + tokenizer: TokenOutputStream::new(tokenizer), |
| 59 | + logits_processor, |
| 60 | + repeat_penalty, |
| 61 | + repeat_last_n, |
| 62 | + device: device.clone(), |
| 63 | + } |
| 64 | + } |
| 65 | + |
| 66 | + fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> { |
| 67 | + use std::io::Write; |
| 68 | + self.tokenizer.clear(); |
| 69 | + let mut tokens = self |
| 70 | + .tokenizer |
| 71 | + .tokenizer() |
| 72 | + .encode(prompt, true) |
| 73 | + .map_err(E::msg)? |
| 74 | + .get_ids() |
| 75 | + .to_vec(); |
| 76 | + for &t in tokens.iter() { |
| 77 | + if let Some(t) = self.tokenizer.next_token(t)? { |
| 78 | + print!("{t}") |
| 79 | + } |
| 80 | + } |
| 81 | + std::io::stdout().flush()?; |
| 82 | + |
| 83 | + let mut generated_tokens = 0usize; |
| 84 | + let eos_token = match self.tokenizer.get_token("<|end▁of▁sentence|>") { |
| 85 | + Some(token) => token, |
| 86 | + None => anyhow::bail!("cannot find the <|end▁of▁sentence|> token"), |
| 87 | + }; |
| 88 | + let start_gen = std::time::Instant::now(); |
| 89 | + for index in 0..sample_len { |
| 90 | + let context_size = if index > 0 { 1 } else { tokens.len() }; |
| 91 | + let start_pos = tokens.len().saturating_sub(context_size); |
| 92 | + let ctxt = &tokens[start_pos..]; |
| 93 | + let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?; |
| 94 | + let logits = self.model.forward(&input, start_pos)?; |
| 95 | + let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?; |
| 96 | + let logits = if self.repeat_penalty == 1. { |
| 97 | + logits |
| 98 | + } else { |
| 99 | + let start_at = tokens.len().saturating_sub(self.repeat_last_n); |
| 100 | + candle_transformers::utils::apply_repeat_penalty( |
| 101 | + &logits, |
| 102 | + self.repeat_penalty, |
| 103 | + &tokens[start_at..], |
| 104 | + )? |
| 105 | + }; |
| 106 | + |
| 107 | + let next_token = self.logits_processor.sample(&logits)?; |
| 108 | + tokens.push(next_token); |
| 109 | + generated_tokens += 1; |
| 110 | + if next_token == eos_token { |
| 111 | + break; |
| 112 | + } |
| 113 | + if let Some(t) = self.tokenizer.next_token(next_token)? { |
| 114 | + print!("{t}"); |
| 115 | + std::io::stdout().flush()?; |
| 116 | + } |
| 117 | + } |
| 118 | + let dt = start_gen.elapsed(); |
| 119 | + if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? { |
| 120 | + print!("{rest}"); |
| 121 | + } |
| 122 | + std::io::stdout().flush()?; |
| 123 | + println!( |
| 124 | + "\n{generated_tokens} tokens generated ({:.2} token/s)", |
| 125 | + generated_tokens as f64 / dt.as_secs_f64(), |
| 126 | + ); |
| 127 | + Ok(()) |
| 128 | + } |
| 129 | +} |
| 130 | + |
| 131 | +#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)] |
| 132 | +enum Which { |
| 133 | + #[value(name = "lite")] |
| 134 | + Lite, |
| 135 | + #[value(name = "lite-chat")] |
| 136 | + LiteChat, |
| 137 | + #[value(name = "coder-lite-chat")] |
| 138 | + CoderLiteChat, |
| 139 | + #[value(name = "v2")] |
| 140 | + V2, |
| 141 | + #[value(name = "v2-chat")] |
| 142 | + V2Chat, |
| 143 | +} |
| 144 | + |
| 145 | +#[derive(Parser, Debug)] |
| 146 | +#[command(author, version, about, long_about = None)] |
| 147 | +struct Args { |
| 148 | + /// Run on CPU rather than on GPU. |
| 149 | + #[arg(long)] |
| 150 | + cpu: bool, |
| 151 | + |
| 152 | + /// Enable tracing (generates a trace-timestamp.json file). |
| 153 | + #[arg(long)] |
| 154 | + tracing: bool, |
| 155 | + |
| 156 | + #[arg(long)] |
| 157 | + use_flash_attn: bool, |
| 158 | + |
| 159 | + #[arg(long)] |
| 160 | + prompt: String, |
| 161 | + |
| 162 | + /// The temperature used to generate samples. |
| 163 | + #[arg(long)] |
| 164 | + temperature: Option<f64>, |
| 165 | + |
| 166 | + /// Nucleus sampling probability cutoff. |
| 167 | + #[arg(long)] |
| 168 | + top_p: Option<f64>, |
| 169 | + |
| 170 | + /// Only sample among the top K samples. |
| 171 | + #[arg(long)] |
| 172 | + top_k: Option<usize>, |
| 173 | + |
| 174 | + /// The seed to use when generating random samples. |
| 175 | + #[arg(long, default_value_t = 299792458)] |
| 176 | + seed: u64, |
| 177 | + |
| 178 | + /// The length of the sample to generate (in tokens). |
| 179 | + #[arg(long, short = 'n', default_value_t = 10000)] |
| 180 | + sample_len: usize, |
| 181 | + |
| 182 | + /// The model size to use. |
| 183 | + #[arg(long, default_value = "lite")] |
| 184 | + which: Which, |
| 185 | + |
| 186 | + #[arg(long)] |
| 187 | + model_id: Option<String>, |
| 188 | + |
| 189 | + #[arg(long, default_value = "main")] |
| 190 | + revision: String, |
| 191 | + |
| 192 | + /// Penalty to be applied for repeating tokens, 1. means no penalty. |
| 193 | + #[arg(long, default_value_t = 1.1)] |
| 194 | + repeat_penalty: f32, |
| 195 | + |
| 196 | + /// The context size to consider for the repeat penalty. |
| 197 | + #[arg(long, default_value_t = 64)] |
| 198 | + repeat_last_n: usize, |
| 199 | +} |
| 200 | + |
| 201 | +fn main() -> Result<()> { |
| 202 | + use tracing_chrome::ChromeLayerBuilder; |
| 203 | + use tracing_subscriber::prelude::*; |
| 204 | + |
| 205 | + let args = Args::parse(); |
| 206 | + |
| 207 | + let _guard = if args.tracing { |
| 208 | + let (chrome_layer, guard) = ChromeLayerBuilder::new().build(); |
| 209 | + tracing_subscriber::registry().with(chrome_layer).init(); |
| 210 | + Some(guard) |
| 211 | + } else { |
| 212 | + None |
| 213 | + }; |
| 214 | + println!( |
| 215 | + "avx: {}, neon: {}, simd128: {}, f16c: {}", |
| 216 | + candle::utils::with_avx(), |
| 217 | + candle::utils::with_neon(), |
| 218 | + candle::utils::with_simd128(), |
| 219 | + candle::utils::with_f16c() |
| 220 | + ); |
| 221 | + println!( |
| 222 | + "temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}", |
| 223 | + args.temperature.unwrap_or(0.), |
| 224 | + args.repeat_penalty, |
| 225 | + args.repeat_last_n |
| 226 | + ); |
| 227 | + |
| 228 | + let start = std::time::Instant::now(); |
| 229 | + let api = Api::new()?; |
| 230 | + let model_id = match args.model_id { |
| 231 | + Some(model_id) => model_id, |
| 232 | + None => match args.which { |
| 233 | + Which::CoderLiteChat => "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct".to_string(), |
| 234 | + Which::LiteChat => "deepseek-ai/DeepSeek-V2-Lite-Chat".to_string(), |
| 235 | + Which::Lite => "deepseek-ai/DeepSeek-V2-Lite".to_string(), |
| 236 | + Which::V2 => "deepseek-ai/DeepSeek-V2".to_string(), |
| 237 | + Which::V2Chat => "deepseek-ai/DeepSeek-V2-Chat".to_string(), |
| 238 | + }, |
| 239 | + }; |
| 240 | + let repo = api.repo(Repo::with_revision( |
| 241 | + model_id, |
| 242 | + RepoType::Model, |
| 243 | + args.revision, |
| 244 | + )); |
| 245 | + let tokenizer_filename = repo.get("tokenizer.json")?; |
| 246 | + let filenames = candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?; |
| 247 | + println!("retrieved the files in {:?}", start.elapsed()); |
| 248 | + let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?; |
| 249 | + |
| 250 | + let start = std::time::Instant::now(); |
| 251 | + let config: DeepSeekV2Config = { |
| 252 | + let config_file = repo.get("config.json")?; |
| 253 | + serde_json::from_slice(&std::fs::read(config_file)?)? |
| 254 | + }; |
| 255 | + let device = candle_examples::device(args.cpu)?; |
| 256 | + let (model, device) = { |
| 257 | + let dtype = if device.is_cpu() { |
| 258 | + DType::F16 |
| 259 | + } else { |
| 260 | + DType::BF16 |
| 261 | + }; |
| 262 | + let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? }; |
| 263 | + let model = DeepSeekV2::new(&config, vb)?; |
| 264 | + (model, device) |
| 265 | + }; |
| 266 | + |
| 267 | + println!("loaded the model in {:?}", start.elapsed()); |
| 268 | + |
| 269 | + let mut pipeline = TextGeneration::new( |
| 270 | + model, |
| 271 | + tokenizer, |
| 272 | + args.seed, |
| 273 | + args.temperature, |
| 274 | + args.top_p, |
| 275 | + args.top_k, |
| 276 | + args.repeat_penalty, |
| 277 | + args.repeat_last_n, |
| 278 | + &device, |
| 279 | + ); |
| 280 | + pipeline.run(&args.prompt, args.sample_len)?; |
| 281 | + Ok(()) |
| 282 | +} |
0 commit comments