-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
91 lines (81 loc) · 2.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import torch
import torch.nn as nn
import torch.optim as optim
import argparse
import numpy as np
import random
from resnet18 import ResNet, BasicBlock
from resnet18_torchvision import build_model
from training_utils import train, validate
from utils import save_plots, get_data
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model",
default="scratch",
help="choose model built from scratch or the Torchvision model",
choices=["scratch", "torchvision"],
)
args = vars(parser.parse_args())
# Set seed.
seed = 42
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
np.random.seed(seed)
random.seed(seed)
# Learning and training parameters.
epochs = 20
batch_size = 64
learning_rate = 0.01
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
train_loader, valid_loader = get_data(batch_size=batch_size)
# Define model based on the argument parser string.
if args["model"] == "scratch":
print("[INFO]: Training ResNet18 built from scratch...")
model = ResNet(img_channels=3, num_layers=18, block=BasicBlock, num_classes=10).to(
device
)
plot_name = "resnet_scratch"
if args["model"] == "torchvision":
print("[INFO]: Training the Torchvision ResNet18 model...")
model = build_model(pretrained=False, fine_tune=True, num_classes=10).to(device)
plot_name = "resnet_torchvision"
print(model)
# Total parameters and trainable parameters.
total_params = sum(p.numel() for p in model.parameters())
print(f"{total_params:,} total parameters.")
total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"{total_trainable_params:,} training parameters.")
# Optimizer.
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
# Loss function.
criterion = nn.CrossEntropyLoss()
if __name__ == "__main__":
# Lists to keep track of losses and accuracies.
train_loss, valid_loss = [], []
train_acc, valid_acc = [], []
# Start the training.
for epoch in range(epochs):
print(f"[INFO]: Epoch {epoch+1} of {epochs}")
train_epoch_loss, train_epoch_acc = train(
model, train_loader, optimizer, criterion, device
)
valid_epoch_loss, valid_epoch_acc = validate(
model, valid_loader, criterion, device
)
train_loss.append(train_epoch_loss)
valid_loss.append(valid_epoch_loss)
train_acc.append(train_epoch_acc)
valid_acc.append(valid_epoch_acc)
print(
f"Training loss: {train_epoch_loss:.3f}, training acc: {train_epoch_acc:.3f}"
)
print(
f"Validation loss: {valid_epoch_loss:.3f}, validation acc: {valid_epoch_acc:.3f}"
)
print("-" * 50)
# Save the loss and accuracy plots.
save_plots(train_acc, valid_acc, train_loss, valid_loss, name=plot_name)
print("TRAINING COMPLETE")