forked from wjakob/nanobind
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_ndarray.cpp
286 lines (231 loc) · 10.2 KB
/
test_ndarray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#include <nanobind/nanobind.h>
#include <nanobind/ndarray.h>
#include <algorithm>
#include <vector>
namespace nb = nanobind;
using namespace nb::literals;
int destruct_count = 0;
static float f_global[] { 1, 2, 3, 4, 5, 6, 7, 8 };
static int i_global[] { 1, 2, 3, 4, 5, 6, 7, 8 };
#if defined(__aarch64__)
namespace nanobind {
template <> struct ndarray_traits<__fp16> {
static constexpr bool is_float = true;
static constexpr bool is_bool = false;
static constexpr bool is_int = false;
static constexpr bool is_signed = true;
};
};
#endif
NB_MODULE(test_ndarray_ext, m) {
m.def("get_shape", [](const nb::ndarray<nb::ro> &t) {
nb::list l;
for (size_t i = 0; i < t.ndim(); ++i)
l.append(t.shape(i));
return l;
}, "array"_a.noconvert());
m.def("get_size", [](const nb::ndarray<> &t) {
return t.size();
}, "array"_a.noconvert());
m.def("get_itemsize", [](const nb::ndarray<> &t) {
return t.itemsize();
}, "array"_a.noconvert());
m.def("get_nbytes", [](const nb::ndarray<> &t) {
return t.nbytes();
}, "array"_a.noconvert());
m.def("check_shape_ptr", [](const nb::ndarray<> &t) {
std::vector<int64_t> shape(t.ndim());
std::copy(t.shape_ptr(), t.shape_ptr() + t.ndim(), shape.begin());
for (size_t i = 0; i < t.ndim(); ++i)
if (shape[i] != (int64_t) t.shape(i))
return false;
return true;
});
m.def("check_stride_ptr", [](const nb::ndarray<> &t) {
std::vector<int64_t> stride(t.ndim());
std::copy(t.stride_ptr(), t.stride_ptr() + t.ndim(), stride.begin());
for (size_t i = 0; i < t.ndim(); ++i)
if (stride[i] != (int64_t) t.stride(i))
return false;
return true;
});
m.def("check_float", [](const nb::ndarray<> &t) {
return t.dtype() == nb::dtype<float>();
});
m.def("check_bool", [](const nb::ndarray<> &t) {
return t.dtype() == nb::dtype<bool>();
});
m.def("pass_float32", [](const nb::ndarray<float> &) { }, "array"_a.noconvert());
m.def("pass_uint32", [](const nb::ndarray<uint32_t> &) { }, "array"_a.noconvert());
m.def("pass_bool", [](const nb::ndarray<bool> &) { }, "array"_a.noconvert());
m.def("pass_float32_shaped",
[](const nb::ndarray<float, nb::shape<3, nb::any, 4>> &) {}, "array"_a.noconvert());
m.def("pass_float32_shaped_ordered",
[](const nb::ndarray<float, nb::c_contig,
nb::shape<nb::any, nb::any, 4>> &) {}, "array"_a.noconvert());
m.def("check_order", [](nb::ndarray<nb::c_contig>) -> char { return 'C'; });
m.def("check_order", [](nb::ndarray<nb::f_contig>) -> char { return 'F'; });
m.def("check_order", [](nb::ndarray<>) -> char { return '?'; });
m.def("make_contig", [](nb::ndarray<nb::c_contig> a) { return a; });
m.def("check_device", [](nb::ndarray<nb::device::cpu>) -> const char * { return "cpu"; });
m.def("check_device", [](nb::ndarray<nb::device::cuda>) -> const char * { return "cuda"; });
m.def("initialize",
[](nb::ndarray<float, nb::shape<10>, nb::device::cpu> &t) {
for (size_t i = 0; i < 10; ++i)
t(i) = (float) i;
});
m.def("initialize",
[](nb::ndarray<float, nb::shape<10, nb::any>, nb::device::cpu> &t) {
int k = 0;
for (size_t i = 0; i < 10; ++i)
for (size_t j = 0; j < t.shape(1); ++j)
t(i, j) = (float) k++;
});
m.def(
"noimplicit",
[](nb::ndarray<float, nb::c_contig, nb::shape<2, 2>>) { return 0; },
"array"_a.noconvert());
m.def(
"implicit",
[](nb::ndarray<float, nb::c_contig, nb::shape<2, 2>>) { return 0; },
"array"_a);
m.def("inspect_ndarray", [](nb::ndarray<> ndarray) {
printf("Tensor data pointer : %p\n", ndarray.data());
printf("Tensor dimension : %zu\n", ndarray.ndim());
for (size_t i = 0; i < ndarray.ndim(); ++i) {
printf("Tensor dimension [%zu] : %zu\n", i, ndarray.shape(i));
printf("Tensor stride [%zu] : %zu\n", i, (size_t) ndarray.stride(i));
}
printf("Tensor is on CPU? %i\n", ndarray.device_type() == nb::device::cpu::value);
printf("Device ID = %u\n", ndarray.device_id());
printf("Tensor dtype check: int16=%i, uint32=%i, float32=%i\n",
ndarray.dtype() == nb::dtype<int16_t>(),
ndarray.dtype() == nb::dtype<uint32_t>(),
ndarray.dtype() == nb::dtype<float>()
);
});
m.def("process", [](nb::ndarray<uint8_t, nb::shape<nb::any, nb::any, 3>,
nb::c_contig, nb::device::cpu> ndarray) {
// Double brightness of the MxNx3 RGB image
for (size_t y = 0; y < ndarray.shape(0); ++y)
for (size_t x = 0; x < ndarray.shape(1); ++x)
for (size_t ch = 0; ch < 3; ++ch)
ndarray(y, x, ch) = (uint8_t) std::min(255, ndarray(y, x, ch) * 2);
});
m.def("destruct_count", []() { return destruct_count; });
m.def("return_dlpack", []() {
float *f = new float[8] { 1, 2, 3, 4, 5, 6, 7, 8 };
size_t shape[2] = { 2, 4 };
nb::capsule deleter(f, [](void *data) noexcept {
destruct_count++;
delete[] (float *) data;
});
return nb::ndarray<float, nb::shape<2, 4>>(f, 2, shape, deleter);
});
m.def("passthrough", [](nb::ndarray<> a) { return a; }, nb::rv_policy::none);
m.def("passthrough_copy", [](nb::ndarray<> a) { return a; }, nb::rv_policy::copy);
m.def("ret_numpy", []() {
float *f = new float[8] { 1, 2, 3, 4, 5, 6, 7, 8 };
size_t shape[2] = { 2, 4 };
nb::capsule deleter(f, [](void *data) noexcept {
destruct_count++;
delete[] (float *) data;
});
return nb::ndarray<nb::numpy, float, nb::shape<2, 4>>(f, 2, shape,
deleter);
});
m.def("ret_numpy_const_ref", []() {
size_t shape[2] = { 2, 4 };
return nb::ndarray<nb::numpy, const float, nb::shape<2, 4>>(f_global, 2, shape);
}, nb::rv_policy::reference);
m.def("ret_numpy_const", []() {
return nb::ndarray<nb::numpy, const float, nb::shape<2, 4>>(f_global, { 2, 4 });
});
m.def("ret_pytorch", []() {
float *f = new float[8] { 1, 2, 3, 4, 5, 6, 7, 8 };
size_t shape[2] = { 2, 4 };
nb::capsule deleter(f, [](void *data) noexcept {
destruct_count++;
delete[] (float *) data;
});
return nb::ndarray<nb::pytorch, float, nb::shape<2, 4>>(f, 2, shape,
deleter);
});
m.def("ret_array_scalar", []() {
float* f = new float[1] { 1 };
size_t shape[1] = {};
nb::capsule deleter(f, [](void* data) noexcept {
destruct_count++;
delete[] (float *) data;
});
return nb::ndarray<nb::numpy, float>(f, 0, shape, deleter);
});
m.def("noop_3d_c_contig",
[](nb::ndarray<float, nb::ndim<3>, nb::c_contig>) { return; });
m.def("noop_2d_f_contig",
[](nb::ndarray<float, nb::ndim<2>, nb::f_contig>) { return; });
m.def("accept_rw", [](nb::ndarray<float, nb::shape<2>> a) { return a(0); });
m.def("accept_ro", [](nb::ndarray<const float, nb::shape<2>> a) { return a(0); });
m.def("check", [](nb::handle h) { return nb::ndarray_check(h); });
struct Cls {
auto f1() { return nb::ndarray<nb::numpy, float>(data, { 10 }); }
auto f2() { return nb::ndarray<nb::numpy, float>(data, { 10 }, nb::cast(this, nb::rv_policy::none)); }
auto f3(nb::handle owner) { return nb::ndarray<nb::numpy, float>(data, { 10 }, owner); }
~Cls() {
destruct_count++;
}
float data [10] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
};
nb::class_<Cls>(m, "Cls")
.def(nb::init<>())
.def("f1", &Cls::f1)
.def("f2", &Cls::f2)
.def("f1_ri", &Cls::f1, nb::rv_policy::reference_internal)
.def("f2_ri", &Cls::f2, nb::rv_policy::reference_internal)
.def("f3_ri", &Cls::f3, nb::rv_policy::reference_internal);
m.def("fill_view_1", [](nb::ndarray<> x) {
if (x.ndim() == 2 && x.dtype() == nb::dtype<float>()) {
auto v = x.view<float, nb::ndim<2>>();
for (size_t i = 0; i < v.shape(0); i++)
for (size_t j = 0; j < v.shape(1); j++)
v(i, j) *= 2;
}
}, "x"_a.noconvert());
m.def("fill_view_2", [](nb::ndarray<float, nb::ndim<2>, nb::device::cpu> x) {
auto v = x.view();
for (size_t i = 0; i < v.shape(0); ++i)
for (size_t j = 0; j < v.shape(1); ++j)
v(i, j) = (float) (i * 10 + j);
}, "x"_a.noconvert());
m.def("fill_view_3", [](nb::ndarray<float, nb::shape<3, 4>, nb::c_contig, nb::device::cpu> x) {
auto v = x.view();
for (size_t i = 0; i < v.shape(0); ++i)
for (size_t j = 0; j < v.shape(1); ++j)
v(i, j) = (float) (i * 10 + j);
}, "x"_a.noconvert());
m.def("fill_view_4", [](nb::ndarray<float, nb::shape<3, 4>, nb::f_contig, nb::device::cpu> x) {
auto v = x.view();
for (size_t i = 0; i < v.shape(0); ++i)
for (size_t j = 0; j < v.shape(1); ++j)
v(i, j) = (float) (i * 10 + j);
}, "x"_a.noconvert());
#if defined(__aarch64__)
m.def("ret_numpy_half", []() {
__fp16 *f = new __fp16[8] { 1, 2, 3, 4, 5, 6, 7, 8 };
size_t shape[2] = { 2, 4 };
nb::capsule deleter(f, [](void *data) noexcept {
destruct_count++;
delete[] (__fp16*) data;
});
return nb::ndarray<nb::numpy, __fp16, nb::shape<2, 4>>(f, 2, shape,
deleter);
});
#endif
m.def("cast", [](bool b) -> nb::ndarray<nb::numpy> {
using Ret = nb::ndarray<nb::numpy>;
if (b)
return Ret(nb::ndarray<nb::numpy, float, nb::shape<>>(f_global, 0, nullptr));
else
return Ret(nb::ndarray<nb::numpy, int, nb::shape<>>(i_global, 0, nullptr));
});
}