-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph.py
355 lines (293 loc) · 15.5 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import os
import time
import numpy as np
import torch
import torchvision.utils as vutils
from matplotlib import pyplot as plt
from sklearn.metrics import roc_curve, auc
from scipy.optimize import brentq
from scipy.interpolate import interp1d
import torch.nn as nn
import model
import show
import record
class NNGraph(object):
def __init__(self, dataloader, config, isize):
super(NNGraph, self).__init__()
self.config = config
self.isize = isize
self.train_model = self._get_train_model(config)
record.record_dict(self.config, self.train_model["config"])
self.config = self.train_model["config"]
self.dataloader = dataloader
def _get_train_model(self, config):
train_model = model.init_train_model(config, self.isize)
# train_model = self._load_train_model(train_model)
return train_model
def _save_train_model(self):
model_dict = model.get_model_dict(self.train_model)
file_full_path = record.get_check_point_file_full_path(self.config)
torch.save(model_dict, file_full_path)
def _load_train_model(self, train_model):
'''
path: save/"dataset_image_size"_"batch_size"_
"number_of_generator_feature"_"number_of_discriminator_feature"_"size_of_z_latent"_"learn_rate"
/checkpoint.tar
'''
file_full_path = record.get_check_point_file_full_path(self.config)
if os.path.exists(file_full_path) and self.config["train_load_check_point_file"]:
checkpoint = torch.load(file_full_path)
train_model = model.load_model_dict(train_model, checkpoint)
return train_model
def _train_step(self, data, i):
netG = self.train_model["netG"]
optimizerG = self.train_model["optimizerG"]
netD = self.train_model["netD"]
optimizerD = self.train_model["optimizerD"]
device = self.config["device"]
netDTeacher = self.train_model["netTeacher"]
optimizerDTeacher = self.train_model["optimizerTeacher"]
# real_data = data[0].to(device)
input = torch.empty(size=(self.config["batch_size"], 3, self.isize, self.isize), dtype=torch.float32,
device=device)
label = torch.empty(size=(self.config["batch_size"],), dtype=torch.float32, device=device)
# gt = torch.empty(size=(self.config["batch_size"],), dtype=torch.long, device=device)
real_label = torch.ones(size=(self.config["batch_size"],), dtype=torch.float32, device=device)
fake_label = torch.zeros(size=(self.config["batch_size"],), dtype=torch.float32, device=device)
with torch.no_grad():
input.resize_(data[0].size()).copy_(data[0])
# gt.resize_(data[1].size()).copy_(data[1])
label.resize_(data[1].size())
fake, latent_i, latent_o = netG(input)
# _, latent_o = netG(fake)
pred_real, feat_real, real_last, _ = netD(input)
pred_fake, feat_fake, fake_last, _ = netD(fake.detach())
# pred_real, feat_real = netD(input)
# pred_fake, feat_fake = netD(fake.detach())
pred_real_teacher, real_last_teacher = netDTeacher(input)
pred_fake_teacher, fake_last_teacher = netDTeacher(fake.detach())
errD = torch.tensor([0])
errG = model.get_Generator_loss(netG, netD, optimizerG, input, fake, latent_i, latent_o, self.config)
if i % self.config["generator_learntimes"] == 0:
for p in netD.parameters(): # reset requires_grad
p.requires_grad = True # they are set to False below in netG update
for parm in netD.parameters():
parm.data.clamp_(-self.config["clamp_num"], self.config["clamp_num"])
errD = model.get_Discriminator_loss(netD, optimizerD, pred_real, pred_fake, real_label, fake_label,
real_last, fake_last, real_last_teacher, fake_last_teacher, optimizerDTeacher)
#errD = model.get_Discriminator_loss(netD, optimizerD, pred_real, pred_fake, real_label, fake_label)
# for p in netD.parameters():
# p.requires_grad = False
#if errD.item() < 1e-5:
#self.train_model["netG"].apply(model._weights_init)
return errD, errG
'''
noise = model.get_noise(real_data, self.config)
fake_data = netG(noise)
label = model.get_label(real_data, self.config)
label = label.to(torch.float32)
errD, D_x, D_G_z1 = model.get_Discriminator_loss(netD, optimizerD, real_data, fake_data.detach(), label,
criterion, self.config)
errG, D_G_z2 = model.get_Generator_loss(netG, netD, optimizerG, fake_data, label, criterion, self.config)
return errD, errG, D_x, D_G_z1, D_G_z2
'''
def _train_a_step(self, data, i, epoch):
start = time.time()
errD, errG = self._train_step(data, i)
end = time.time()
step_time = end - start
self.train_model["take_time"] = self.train_model["take_time"] + step_time
print_every = self.config["print_every"]
if i % print_every == 0:
record.print_status(step_time*print_every,
self.train_model["take_time"],
epoch,
i,
errD,
errG,
self.config,
self.dataloader)
return errD, errG
def _DCGAN_eval(self):
# fixed_noise: 64, nz, 1, 1
fixed_noise = self.train_model["fixed_noise"]
with torch.no_grad():
netG = self.train_model["netG"]
fake = netG(fixed_noise).detach().cpu() # 64, nc, 64, 64
return fake
def _save_generator_images(self, iters, epoch, i):
num_epochs = self.config["num_epochs"]
save_every = self.config["save_every"]
img_list = self.train_model["img_list"]
if (iters % save_every == 0) or ((epoch == num_epochs-1) and (i == len(self.dataloader)-1)):
fake = self._DCGAN_eval() # 64, nc, 64, 64
img_one = vutils.make_grid(fake, padding=2, normalize=True)
img_list.append(img_one)
show._show_one_img(img_one)
self._save_train_model()
def _train_iters(self):
num_epochs = self.config["num_epochs"]
G_losses = self.train_model["G_losses"]
D_losses = self.train_model["D_losses"]
iters = self.train_model["current_iters"]
start_epoch = self.train_model["current_epoch"]
if self.config["add_gasuss"]:
for _, data in enumerate(self.dataloader['train'], 0):
data[0] = self.gasuss_noise(data[0])
for epoch in range(start_epoch, num_epochs):
self.train_model["current_epoch"] = epoch
for i, data in enumerate(self.dataloader['train'], 0):
errD, errG = self._train_a_step(data, i, epoch)
G_losses[0].append(i + epoch * len(self.dataloader['train']))
G_losses[1].append(errG.item())
if errD.item() != 0:
D_losses[0].append(i + epoch * len(self.dataloader['train']))
D_losses[1].append(errD.item())
iters += 1
self.train_model["current_iters"] = iters
# self._save_generator_images(iters, epoch, i)
self.test()
self._save_loss_images(G_losses, D_losses)
def _save_loss_images(self, G_losses, D_losses):
x1 = G_losses[0]
x2 = D_losses[0]
y1 = G_losses[1]
y2 = D_losses[1]
fig = plt.figure(figsize=(7, 5)) # figsize是图片的大小`
plt.rcParams['font.sans-serif'] = ['SimHei']
fig.add_subplot(2, 1, 1) # ax1是子图的名字`
plt.plot(x1, y1, 'g-', label=u'G_loss')
plt.legend() # 显示图例, 图例中内容由 label 定义
plt.ylabel('loss') # 横坐标轴的标题
plt.xlabel('iters') # 纵坐标轴的标题
fig.add_subplot(2, 1, 2) # ax1是子图的名字`
plt.plot(x2, y2, 'r-', label=u'D_loss')
plt.legend() # 显示图例, 图例中内容由 label 定义
plt.ylabel('loss') # 横坐标轴的标题
plt.xlabel('iters') # 纵坐标轴的标题
ticks = time.time()
# plt.text(-1, -1, "generator_learntimes: %s\t " % self.config["generator_learntimes"])
show._save_loss(G_losses, D_losses, ticks)
plt.title('Loss图-mnist-1') # 图形的标题
# 显示图形
plt.savefig("save/loss/loss_%s.png" % int(ticks))
plt.show()
def gasuss_noise(self, image, mean=0, var=0.001):
'''
添加高斯噪声
image:原始图像
mean : 均值
var : 方差,越大,噪声越大
'''
# image = np.array(image / 255, dtype=float) # 将原始图像的像素值进行归一化,除以255使得像素值在0-1之间
noise = np.random.normal(mean, var ** 0.5, image.shape) # 创建一个均值为mean,方差为var呈高斯分布的图像矩阵
out = image + noise # 将噪声和原始图像进行相加得到加噪后的图像
if out.min() < 0:
low_clip = -1.
else:
low_clip = 0.
out = np.clip(out, low_clip, 1.0) # clip函数将元素的大小限制在了low_clip和1之间了,小于的用low_clip代替,大于1的用1代替
# out = np.uint8(out * 255) # 解除归一化,乘以255将加噪后的图像的像素值恢复
# cv.imshow("gasuss", out)
# noise = noise*255
return out
def train(self):
self._train_iters()
# show.show_images(self.train_model, self.config, self.dataloader)
def test(self):
device = self.config["device"]
with torch.no_grad():
netG = self.train_model["netG"]
an_scores = torch.zeros(size=(len(self.dataloader['test'].dataset),), dtype=torch.float32,
device=device)
gt_labels = torch.zeros(size=(len(self.dataloader['test'].dataset),), dtype=torch.long,
device=device)
latent_i = torch.zeros(size=(len(self.dataloader['test'].dataset), self.config["size_of_z_latent"]), dtype=torch.float32,
device=device)
latent_o = torch.zeros(size=(len(self.dataloader['test'].dataset), self.config["size_of_z_latent"]), dtype=torch.float32,
device=device)
input = torch.empty(size=(self.config["batch_size"], 3, self.isize, self.isize), dtype=torch.float32,
device=device)
label = torch.empty(size=(self.config["batch_size"],), dtype=torch.float32, device=device)
gt = torch.empty(size=(self.config["batch_size"],), dtype=torch.long, device=device)
# for _, data in enumerate(self.dataloader['test'], 0):
# data[0] = self.gasuss_noise(data[0])
time_i = time.time()
for i, data in enumerate(self.dataloader['test'], 0):
with torch.no_grad():
input.resize_(data[0].size()).copy_(data[0])
gt.resize_(data[1].size()).copy_(data[1])
label.resize_(data[1].size())
fake, latent_input, latent_fake = netG(input)
#_, latent_fake = netG(fake)
# error = torch.zeros_like(fake)
if self.config["score_method"] == "normal":
error = torch.mean(torch.pow((latent_input - latent_fake), 2), dim=1)
else:
err_d_con = torch.mean((fake - input), dim=1)
err_d_con = torch.mean(err_d_con, dim=[1, 2], keepdims=True)
err_d_enc = torch.mean(torch.pow((latent_input - latent_fake), 2), dim=1)
error = err_d_con * (1 - self.config["error_lamda"]) + \
err_d_enc * self.config["error_lamda"]
'''
netD = self.train_model["netD"]
_, _, _, dis_input = netD(input)
_, _, _, dis_fake = netD(fake)
error = torch.mean(torch.pow((dis_input - dis_fake), 2), dim=1)
'''
an_scores[i * self.config["batch_size"]: i * self.config["batch_size"] + error.size(0)] = error.reshape(
error.size(0))
gt_labels[i * self.config["batch_size"]: i * self.config["batch_size"] + error.size(0)] = gt.reshape(
error.size(0))
latent_i[i * self.config["batch_size"]: i * self.config["batch_size"] + error.size(0),:] = latent_input.reshape(
error.size(0), self.config["size_of_z_latent"])
latent_o[i * self.config["batch_size"]: i * self.config["batch_size"] + error.size(0),:] = latent_fake.reshape(
error.size(0), self.config["size_of_z_latent"])
'''
print_every = self.config["print_every"]
if i % print_every == 0 or i == len(self.dataloader['test'].dataset) / self.config["batch_size"]:
img1 = vutils.make_grid(fake, padding=2, normalize=True)
img2 = vutils.make_grid(input, padding=2, normalize=True)
show._show_one_img(img1.cpu())
show._show_one_img(img2.cpu())
'''
an_scores = (an_scores - torch.min(an_scores)) / (torch.max(an_scores) - torch.min(an_scores))
roc_auc = self.roc(gt_labels, an_scores, self.config)
time_o = time.time()
step_time = time_o - time_i
record.print_scores(roc_auc, step_time, self.config)
# record.save_status(self.config, print_str)
# print(print_str)
def roc(self, labels, scores, config, saveto = True):
fpr = dict()
tpr = dict()
roc_auc = dict()
labels = labels.cpu()
scores = scores.cpu()
# True/False Positive Rates.
fpr, tpr, _ = roc_curve(labels, scores)
roc_auc = auc(fpr, tpr)
# Equal Error Rate
eer = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)
if saveto:
plt.figure()
lw = 2
plt.plot(fpr, tpr, color='darkorange', lw=lw, label='(AUC = %0.2f, EER = %0.2f)' % (roc_auc, eer))
plt.plot([eer], [1 - eer], marker='o', markersize=5, color="navy")
plt.plot([0, 1], [1, 0], color='navy', lw=1, linestyle=':')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
# saveto = saveto + "_%s_%s_" % (config["mnist_abnormal_class"], time.strftime("%Y_%m_%d_%Hh_%Mm_%Ss", time.localtime()))
# plt.savefig(os.path.join(saveto, 'ROC.pdf'))
plt.show()
plt.close()
return roc_auc
def test():
ticks = time.time()
ptr = "loss_%s" % int(ticks)
print(ptr)
# test()