-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvoting.py
294 lines (231 loc) · 13.5 KB
/
voting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#!/usr/bin/env python3
import time
import argparse
import logging
import numpy as np
import torch
from timm.models import create_model, apply_test_time_pool, load_checkpoint
from timm.data import ImageDataset, create_loader, resolve_data_config
from timm.utils import AverageMeter, setup_default_logging, accuracy
from sklearn.metrics import classification_report, accuracy_score, precision_score, recall_score, f1_score
torch.backends.cudnn.benchmark = True
_logger = logging.getLogger('voting')
parser = argparse.ArgumentParser(description='voting log')
parser.add_argument('--view1', '-v1', metavar='DIR',
help='path to view1 dataset')
parser.add_argument('--view2', '-v2', metavar='DIR',
help='path to view2 dataset')
parser.add_argument('--view3', '-v3', metavar='DIR',
help='path to view3 dataset')
parser.add_argument('--model-view1', '-m1', '--model', metavar='MODEL', default=None,
help='model architecture for view1 (default: none)')
parser.add_argument('--model-view2', '-m2', metavar='MODEL', default=None,
help='model architecture for view2 (default: none)')
parser.add_argument('--model-view3', '-m3', metavar='MODEL', default=None,
help='model architecture for view3 (default: none)')
parser.add_argument('--checkpoint-view1', '-cp1', default='', type=str, metavar='PATH',
help='path to latest checkpoint for view1 (default: none)')
parser.add_argument('--checkpoint-view2', '-cp2', default='', type=str, metavar='PATH',
help='path to latest checkpoint for view2 (default: none)')
parser.add_argument('--checkpoint-view3', '-cp3', default='', type=str, metavar='PATH',
help='path to latest checkpoint for view3 (default: none)')
parser.add_argument('--num-classes', type=int, default=16,
help='Number classes in dataset')
# timm default parameters
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
help='number of data loading workers (default: 2)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--img-size', default=None, type=int,
metavar='N', help='Input image dimension')
parser.add_argument('--input-size', default=None, nargs=3, type=int,
metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty')
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
help='Override std deviation of of dataset')
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
help='Image resize interpolation type (overrides model)')
parser.add_argument('--log-freq', default=10, type=int,
metavar='N', help='batch logging frequency (default: 10)')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--num-gpu', type=int, default=1,
help='Number of GPUS to use')
parser.add_argument('--no-test-pool', dest='no_test_pool', action='store_true',
help='disable test time pool')
parser.add_argument('--topk', default=5, type=int,
metavar='N', help='Top-k to output to CSV')
def validate(loader_view, model, args):
with torch.no_grad():
top1_view = AverageMeter()
top3_view = AverageMeter()
top5_view = AverageMeter()
top10_view = AverageMeter()
batch_time = AverageMeter()
end = time.time()
for batch_idx, (input, target) in enumerate(loader_view):
input = input.cuda()
target = target.cuda()
scores_view = model(input)
if batch_idx == 0:
scores = scores_view
target_ids = target
if batch_idx > 0:
scores = torch.cat((scores,scores_view),dim=0)
target_ids = torch.cat((target_ids,target),dim=0)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# measure accuracy
acc1, acc3, acc5, acc10 = accuracy(scores_view.detach(), target, topk=(1, 3, 5, 10))
top1_view.update(acc1.item(), input.size(0))
top3_view.update(acc3.item(), input.size(0))
top5_view.update(acc5.item(), input.size(0))
top10_view.update(acc10.item(), input.size(0))
if batch_idx % args.log_freq == 0:
_logger.info('Predict: [{0}/{1}] Time {batch_time.val:.3f} ({batch_time.avg:.3f})'.format(
batch_idx, len(loader_view), batch_time=batch_time))
return scores, target_ids, top1_view, top3_view, top5_view, top10_view
# soft-voting
def average(outputs):
return sum(outputs) / len(outputs)
# hard-voting
def majority_vote(outputs: list[torch.Tensor]) -> torch.Tensor:
'''
Compute the majority vote for a list of model outputs.
outputs: list of length (n_models)
containing tensors with shape (n_samples, n_classes)
majority_one_hots: (n_samples, n_classes)
'''
if len(outputs[0].shape) != 2:
msg = """The shape of outputs should be a list tensors of
length (n_models) with sizes (n_samples, n_classes).
The first tensor had shape {} """
raise ValueError(msg.format(outputs[0].shape))
votes = torch.stack(outputs).argmax(dim=2).mode(dim=0)[0]
proba = torch.zeros_like(outputs[0])
majority_one_hots = proba.scatter_(1, votes.view(-1, 1), 1)
return majority_one_hots
def main():
setup_default_logging()
args = parser.parse_args()
if args.model_view2 == None and args.model_view3 == None:
args.model_view2 = args.model_view1
args.model_view3 = args.model_view1
# create model - 3 views
model_view1 = create_model(
args.model_view1,
num_classes=args.num_classes,
in_chans=3,
pretrained=args.pretrained)
if args.checkpoint_view1:
load_checkpoint(model_view1, args.checkpoint_view1, strict=False)
model_view2 = create_model(
args.model_view2,
num_classes=args.num_classes,
in_chans=3,
pretrained=args.pretrained)
if args.checkpoint_view2:
load_checkpoint(model_view2, args.checkpoint_view2, strict=False)
model_view3 = create_model(
args.model_view3,
num_classes=args.num_classes,
in_chans=3,
pretrained=args.pretrained)
if args.checkpoint_view3:
load_checkpoint(model_view3, args.checkpoint_view3, strict=False)
_logger.info('Model_view1 %s created, param count: %d' %
(args.model_view1, sum([m.numel() for m in model_view1.parameters()])))
_logger.info('Model_view2 %s created, param count: %d' %
(args.model_view2, sum([m.numel() for m in model_view2.parameters()])))
_logger.info('Model_view3 %s created, param count: %d' %
(args.model_view3, sum([m.numel() for m in model_view3.parameters()])))
config_view1 = resolve_data_config(vars(args), model=model_view1)
config_view2 = resolve_data_config(vars(args), model=model_view2)
config_view3 = resolve_data_config(vars(args), model=model_view3)
model_view1, test_time_pool = (model_view1, False) if args.no_test_pool else apply_test_time_pool(model_view1, config_view1)
model_view2, test_time_pool = (model_view2, False) if args.no_test_pool else apply_test_time_pool(model_view2, config_view2)
model_view3, test_time_pool = (model_view3, False) if args.no_test_pool else apply_test_time_pool(model_view3, config_view3)
if args.num_gpu > 1:
model_view1 = torch.nn.DataParallel(model_view1, device_ids=list(range(args.num_gpu))).cuda()
model_view2 = torch.nn.DataParallel(model_view2, device_ids=list(range(args.num_gpu))).cuda()
model_view3 = torch.nn.DataParallel(model_view3, device_ids=list(range(args.num_gpu))).cuda()
else:
model_view1 = model_view1.cuda()
model_view2 = model_view2.cuda()
model_view3 = model_view3.cuda()
loader_view1 = create_loader(
ImageDataset(args.view1),
input_size=config_view1['input_size'],
batch_size=args.batch_size,
use_prefetcher=True,
interpolation=config_view1['interpolation'],
mean=config_view1['mean'],
std=config_view1['std'],
num_workers=args.workers,
crop_pct=1.0 if test_time_pool else config_view1['crop_pct'])
loader_view2 = create_loader(
ImageDataset(args.view2),
input_size=config_view2['input_size'],
batch_size=args.batch_size,
use_prefetcher=True,
interpolation=config_view2['interpolation'],
mean=config_view2['mean'],
std=config_view2['std'],
num_workers=args.workers,
crop_pct=1.0 if test_time_pool else config_view2['crop_pct'])
loader_view3 = create_loader(
ImageDataset(args.view3),
input_size=config_view3['input_size'],
batch_size=args.batch_size,
use_prefetcher=True,
interpolation=config_view3['interpolation'],
mean=config_view3['mean'],
std=config_view3['std'],
num_workers=args.workers,
crop_pct=1.0 if test_time_pool else config_view3['crop_pct'])
model_view1.eval()
model_view2.eval()
model_view3.eval()
print('--------------------------------------------------------------------------------------')
# ------------ view 1 -----------------
scores_view1, target, top1_view1, top3_view1, top5_view1, top10_view1 = validate(loader_view1, model_view1, args)
print('--- model_view1-image: ','|','TestACC@1:',top1_view1.avg,'|','|','ACC@3:',top3_view1.avg,'|','|','ACC@5:',top5_view1.avg,'|','|','ACC@10:',top10_view1.avg,'|')
# ------------ view 2 -----------------
scores_view2, target_nouse, top1_view2, top3_view2, top5_view2, top10_view2 = validate(loader_view2, model_view2, args)
print('--- model_view2-image: ','|','TestACC@1:',top1_view2.avg,'|','|','ACC@3:',top3_view2.avg,'|','|','ACC@5:',top5_view2.avg,'|','|','ACC@10:',top10_view2.avg,'|')
# ------------ view 3 -----------------
scores_view3, target_nouse, top1_view3, top3_view3, top5_view3, top10_view3 = validate(loader_view3, model_view3, args)
print('--- model_view3-image: ','|','TestACC@1:',top1_view3.avg,'|','|','ACC@3:',top3_view3.avg,'|','|','ACC@5:',top5_view3.avg,'|','|','ACC@10:',top10_view3.avg,'|')
# ----- soft ---------
print('--------------------------------------------------------------------------------------')
prob_all = []
prob_all.append(torch.nn.functional.softmax(scores_view1, dim=1))
prob_all.append(torch.nn.functional.softmax(scores_view2, dim=1))
prob_all.append(torch.nn.functional.softmax(scores_view3, dim=1))
soft = average(prob_all)
acc1, acc3, acc5, acc10 = accuracy(soft.detach(), target, topk=(1, 3, 5, 10))
print('--- model_3view softvoting: ','|','TestACC@1:',acc1.cpu().numpy(),'|','|','ACC@3:',acc3.cpu().numpy(),'|','|','ACC@5:',acc5.cpu().numpy(),'|','|','ACC@10:',acc10.cpu().numpy(),'|')
# ----- hard -------
print('--------------------------------------------------------------------------------------')
hard = majority_vote(prob_all)
acc1, acc3, acc5, acc10 = accuracy(hard.detach(), target, topk=(1, 3, 5, 10))
print('--- model_3view hardvoting: ','|','TestACC@1:',acc1.cpu().numpy(),'|','|','ACC@3:',acc3.cpu().numpy(),'|','|','ACC@5:',acc5.cpu().numpy(),'|','|','ACC@10:',acc10.cpu().numpy(),'|')
print('--------------------------------------------------------------------------------------')
# ------precision recall F1 -------
voting_pred = np.concatenate(soft.topk(1)[1].cpu().numpy(),axis=0).tolist()
voting_true = target.cpu().numpy().tolist()
#print('--------------------------------------------------------------------------------------')
#print(classification_report(voting_true, voting_pred, digits=6))
#print('--------------------------------------------------------------------------------------')
print("sklearn accuracy: ", accuracy_score(voting_true, voting_pred))
print("precision_score_macro: ", precision_score(voting_true, voting_pred, average='macro'))
print("precision_score_micro: ", precision_score(voting_true, voting_pred, average='micro'))
print("recall_score_macro: ", recall_score(voting_true, voting_pred, average='macro'))
print("recall_score_micro: ", recall_score(voting_true, voting_pred, average='micro'))
print("f1_score_macro: ", f1_score(voting_true, voting_pred, average='macro'))
print("f1_score_micro: ", f1_score(voting_true, voting_pred, average='micro'))
print('--------------------------------------------------------------------------------------')
if __name__ == '__main__':
main()