-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmandelbrot.js
168 lines (165 loc) · 4.77 KB
/
mandelbrot.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// check for z being analytically known to be in the Mandelbrot set
function analytically_in_mb(zr, zi, qr, qi, mod) {
if(zr == 0 && zi == 0) {
return true;
}
// cardioid test
var q = mod-zr/2+1/16;
if(q*(q+zr-1/4)-qi/4 < 0) {;
return 1;
}
// period 2 bulb
if(mod+zr+15/16 < 0) {
return 1;
}
return 0;
}
// iterate a single point z up to maxiter times,
// returning 0 if z does not diverge,
// or a fractional normalized escape count
function iterate_point(cr, ci, squared_escape, maxiter, log) {
// iteration value
var zr = cr;
var zi = ci;
// squares of iteration value
var qr = cr*cr;
var qi = ci*ci;
// modulus of iteration value
var mod = qr+qi;
if(analytically_in_mb(zr, zi, qr, qi, mod)) {
return 0;
}
var iter = 2; // the first iteration gives cr+i*ci as assigned already
while(1) {
if(iter > maxiter) {
break;
}
zr = qr-qi+cr;
zi = zi*zr;
zi = zi+zi+ci;
qr = zr*zr;
qi = zi*zi;
mod = qr+qi;
if(analytically_in_mb(zr, zi, qr, qi, mod)) {
return 0;
}
if(mod > squared_escape) { // z diverges
return (iter+2-log(log(mod))/log(2))/maxiter;
}
iter += 1;
}
return 0;
}
// maps 0<hue<=1 to HSV space of 0<h<360, s=1, v=1 linearly
// (as a 2pi*hue rotation around the cylinder boundary)
function colorize(buff, ptr, hue, min, interval) {
ptr *= 4; // change ptr from 8 to single byte representation, then divide by 2 because the pixel values are only in the first half of buff
buff[ptr+3] = 255; // full alpha value for everything
if(hue == 0) {
buff[ptr] = 0;
buff[ptr+1] = 0;
buff[ptr+2] = 0;
return;
}
hue -= min;
hue /= interval;
hue *= 767; // 3*256-1
hue = hue|0;
if(hue < 256) { // red-blue sector
buff[ptr] = 255-hue;
buff[ptr+1] = hue;
buff[ptr+2] = 0;
} else if(hue < 512) { // blue-green sector
buff[ptr] = 0;
buff[ptr+1] = 511-hue;
buff[ptr+2] = hue-256;
} else { // green-red sector
buff[ptr] = hue-512;
buff[ptr+1] = 0;
buff[ptr+2] = 767-hue;
}
return;
}
// buff is a byte buffer that is 8 the sice of the number of pixels:
// each pixel needs 8 bytes for the double precision hue value.
// The computed pixel values will be written to the first half of the buffer,
// since only 4 bytes (RGBA) are needed for each.
// xres, yres are the pixel dimensions of the view.
// Scale>=1 is a zoom value that just divides the effective radius.
// orgr, orgi are the complex coordinates of the center of the view.
// Squared_escape is the square of the escape radius.
// Maxiter is the maximum iteration count.
// Rot is an angle that is optionally used to take rotated coordinates.
function draw_mandelbrot_image(buff, xres, yres, scale, orgr, orgi, squared_escape, maxiter, rot) {
var r = 0;
if(scale < 1) {
return;
}
var offset = (orgr*orgr) + (orgi*orgi);
if(offset > 4) {
return;
}
// set the radius
if(offset == 0) {
r = 2;
} else {
r = 2-Math.sqrt(offset);
}
r = r/scale;
var xstep = 2*r/xres;
var ystep = 2*r/yres;
// only continue if the resolution isn't too fine for floating point precision
if(xstep == 0 || ystep == 0) {
return;
}
// Iteration setup:
var view_64 = new Float64Array(buff);
var dptr = 0; // pointer to 64-bit buffer view
// values used for rotations:
var actual_cr = 0, actual_ci = 0;
var rotr = 0, roti = 0;
// precalculate the first x-coordinate value so it isn't recalculated for each row
var begin_cr = orgr-r;
// hue value tracking
var hue = 0;
var min_hue = 1;
var max_hue = 0;
var hue_interval = 0;
// loop variables: vy, vx for pixel positions; ci, cr for complex coordinates
var vy, vx, ci, cr;
// precache Math.log so it's reference isn't searched for every iteration
var log = Math.log;
// First pass: store hue values in buff and track min and max hue values.
for(vy = yres, ci = orgi+r; vy--; ci -= ystep) {
for(vx = xres, cr = begin_cr; vx--; cr += xstep) {
actual_cr = cr;
actual_ci = ci;
if(rot > 0) { // rotate coordinate values rot radians with a complex multiplication by e^(i*rot)
rotr = Math.cos(rot);
roti = Math.sin(rot);
actual_cr = (cr*rotr)-(ci*roti);
actual_ci = (cr*roti) + (ci*rotr);
}
hue = iterate_point(actual_cr, actual_ci, squared_escape, maxiter, log);
view_64[dptr] = hue;
dptr += 1;
if(hue < min_hue) {
min_hue = hue;
}
if(hue > max_hue) {
max_hue = hue;
}
}
}
// Hue values are normalized so that they span the entire (0,1] interval.
// The normalization is linear.
// This is important for very zoomed images, where the raw hue distribution has a varience that is too small to give different colors.
hue_interval = max_hue - min_hue;
var dptr_max = xres*yres;
var view_u8 = new Uint8Array(buff); // view for RGBA pixel components
// Second pass: write normalized color values to the buffer.
for(dptr = 0; dptr < dptr_max; dptr++) {
colorize(view_u8, dptr, view_64[dptr], min_hue, hue_interval);
}
return;
}