-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmadqn.py
215 lines (162 loc) · 7.04 KB
/
madqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import time
import torch
import numpy as np
from copy import deepcopy
import random
from dqn import DQNAgent
from main_fed_test_dqn import Scenario,ENV_dqn
import pickle
import argparse
def parse_args():
parser = argparse.ArgumentParser("SF")
parser.add_argument('--idx', metavar='N', type=int, default=0,
help='DRL training times/epoches')
parser.add_argument('--step', metavar='N', type=int, default=10,
help='attack simulation times')
parser.add_argument("--um", metavar='%', type=int, default=1)
return parser.parse_args()
def train(batch_size=0,bplus=0,random_seed=0,initial_batch_list = [],last_evaluation_episodes=0,load=False,save=False,um=1):
env_name = "SF"
has_continuous_action_space = False
sf = Scenario()
nagents = 1
length = 20
env = ENV_dqn(length, sf, nagents)
# state space dimension
state_dim = env.length
# action space dimension
if has_continuous_action_space:
action_dim = len(env.action_space)
else:
action_dim = len(env.action_space)
###################### logging ######################
max_ep_len = 1000 # max timesteps in one episode
max_training_timesteps = sum(initial_batch_list)+int(last_evaluation_episodes*state_dim-1) # break training loop if timeteps > max_training_timesteps
print_freq = max_ep_len # print avg reward in the interval (in num timesteps)
log_freq = max_ep_len * 2 # log avg reward in the interval (in num timesteps)
save_model_freq = max_training_timesteps # save model frequency (in num timesteps)
action_std = None
batch_list = initial_batch_list+[int(last_evaluation_episodes*state_dim)]
batch_idx = 0
current_batch = batch_list[batch_idx]
eval_set1, eval_set2 = set(), set()
random_seed = random_seed # set random seed if required (0 = no random seed)
run_num_pretrained = 0 #### change this to prevent overwriting weights in same env_name folder
directory = "PPO_preTrained"
if not os.path.exists(directory):
os.makedirs(directory)
directory = directory + '/' + env_name + '/'
if not os.path.exists(directory):
os.makedirs(directory)
checkpoint_path = [directory + "PPO_{}_{}_{}_{}.pth".format(env_name, random_seed, batch_size,i) for i in range(nagents)]
if random_seed:
#print("--------------------------------------------------------------------------------------------")
#print("setting random seed to ", random_seed)
torch.manual_seed(random_seed)
#env.seed(random_seed)
np.random.seed(random_seed)
# print(torch.cuda.is_available())
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# print(torch.cuda.is_available())
# initialize a DQN agent
agents = [DQNAgent(state_dim, action_dim, device = torch.device('cpu')) for i in range(nagents)]
# agents = [DQNAgent(state_dim, action_dim, device = torch.device('cuda:0')).cuda() for i in range(nagents)]
if load:
for i in range(nagents):
agents[i].load(checkpoint_path[i])
#agents[i].load_state_dict(torch.load(checkpoint_path[i]))
# track total training time
start_time = time.time()
# printing variables
print_running_reward = 0
print_running_episodes = 0
time_step = 0
update_step = 0
i_episode = 0
reward_list = []
eval_list = []
er_list = []
re_list = []
total_metric_list = []
#if random.random() < 0:
# a_type = random.randint(1,3)
#else:
# a_type = 0
# training loop
while time_step <= 9500: #max_training_timesteps
state = deepcopy(env.reset())
current_ep_reward = 0
metric_list = []
er = 0
re = 0
for t in range(1, max_ep_len+1):
# select action with policy
actions = [agents[i].act(state,i) for i in range(nagents)]
print("action:", actions)
next_state, reward, done = env.step(actions, eval_set1 = eval_set1, eval_set2 = eval_set2)
#er+=(env.world.agents[0].er)
#re+=(env.world.agents[0].re)
# saving reward and is_terminals
for i in range(nagents):
agents[i].remember(deepcopy(state[i]), deepcopy(actions[i]), reward, deepcopy(next_state[i]), done)
state = deepcopy(next_state)
time_step += 1
update_step += 1
current_ep_reward += reward
#metric_list += metrics
# update DQN agent
for i in range(nagents):
if agents[i].buffer.size() > current_batch:
agents[i].replay(current_batch)
#agents[i].fgsm(current_batch)
if done:
break
total_metric_list.append(metric_list)
reward_list.append(current_ep_reward)
er_list.append(er)
re_list.append(re)
eval_list.append(len(eval_set1)+len(eval_set2))
print_running_reward += current_ep_reward
print_running_episodes += 1
i_episode += 1
if print_running_episodes % (current_batch/length) == 0:
# print average reward till last episode
end_time = time.time()
print_avg_reward = print_running_reward / print_running_episodes
print_avg_reward = round(print_avg_reward, 4)
print("Episode : {} \t Timestep : {} \t Average Reward : {} \t Eval Times : {} \t Time Cost : {}".format(i_episode, time_step, print_avg_reward, len(eval_set1)+len(eval_set2), end_time - start_time))
file3 = open('dpn_cumulreward.txt', 'a')
sss = str(i_episode)+ " epiosde:" +str(print_avg_reward) + "\n"
# Writing a string to file
file3.write(sss)
# Writing multiple strings
# at a time
# Closing file
file3.close()
print_running_reward = 0
print_running_episodes = 0
current_batch = batch_list[batch_idx]
if save:
for i in range(nagents):
agents[i].save(checkpoint_path[i])
#torch.save(agents[i].state_dict(),checkpoint_path[i])
return reward_list, eval_list, total_metric_list,er_list,re_list
if __name__ == "__main__":
arglist = parse_args()
initial_batch_list = [500]*20#[440]*68
rewards_list = []
evals_list = []
#metrics_list = []
er_list = []
re_list = []
for i in range(arglist.idx*arglist.step,(arglist.idx+1)*arglist.step):
reward_list, eval_list, metric_list,er,re = train(initial_batch_list=initial_batch_list,random_seed=i,um=arglist.um)
rewards_list.append(reward_list)
evals_list.append(eval_list)
er_list.append(er)
re_list.append(re)
#metrics_list.append(metric_list)
pickle.dump([rewards_list,er_list,re_list],open("reward_dqn.pkl","wb"))
# pickle.dump(er_list,open("r_dqn_er_new.pkl","wb"))
# pickle.dump(re_list,open("r_dqn_re_new.pkl","wb"))