-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_train.py
43 lines (27 loc) · 1.05 KB
/
mnist_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import tensorflow as tf
import pandas as pd
import os
print("TensorFlow version:", tf.__version__)
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
])
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer='adam',
loss=loss_fn,
metrics=['accuracy'])
history = model.fit(x_train, y_train, epochs=15)
############################################################################
# Save a model
model.save(os.path.join("../models/","v1_mnist.h5"))
#########################################################
# Save history of training
df = pd.DataFrame(history.history)
filename = '../history/v1_mnist.csv'
with open (filename, mode ='w') as f:
df.to_csv(f)