-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
49 lines (38 loc) · 1.05 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
import cv2
import pickle
import matplotlib.pyplot as plt
width = 640
height = 480
cap = cv2.VideoCapture(0)
cap.set(3, width)
cap.set(4, height)
# Check if the camera is opened correctly
if not cap.isOpened():
print("Error: Camera not found or failed to open.")
exit()
# Load the trained model
with open("model_trained_X.p", "rb") as f:
model = pickle.load(f)
def preprocessing(img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.equalizeHist(img)
img = img/255
return img
while True:
success, imgOriginal = cap.read()
if not success:
print("Error: Failed to capture image.")
break
img = np.asarray(imgOriginal)
img = cv2.resize(img, (32, 32))
img = preprocessing(img)
cv2.imshow("Processed Image", img)
img = img.reshape(1, 32, 32, 1)
predictions = model.predict(img)
classIndex = np.argmax(predictions, axis=1)
print("Predicted class:", classIndex[0])
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()