-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsignificance_mean_top_decile.py
127 lines (112 loc) · 4.55 KB
/
significance_mean_top_decile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import util
import time
import os
from statsmodels.stats.multitest import multipletests
from argparse import ArgumentParser
#SEBASTIEN URCHS
def p_permut(empirical_value, permutation_values):
n_permutation = len(permutation_values)
if empirical_value >= 0:
return (np.sum(permutation_values > empirical_value)+1) / (n_permutation + 1)
return (np.sum(permutation_values < empirical_value)+1) / (n_permutation + 1)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--n_path",help="path to mc cc null models dir",dest='n_path')
parser.add_argument("--b_path",help="path to mc cc betamaps dir",dest='b_path')
parser.add_argument("--path_out",help="path to output directory",dest='path_out')
args = parser.parse_args()
n_path_mc = os.path.join(args.n_path,'{}_null_model_mc.npy')
b_path_mc = os.path.join(args.b_path,'cc_{}_results_mc.csv')
n_path_mc_cont = os.path.join(args.n_path,'{}_null_model_mc.npy')
b_path_mc_cont = os.path.join(args.b_path,'cont_{}_results_mc.csv')
path_out = args.path_out
all_groups = ['DEL15q11_2',
#'DUP15q11_2',
#'DUP15q13_3_CHRNA7',
#'DEL2q13',
#'DUP2q13',
#'DUP16p13_11',
#'DEL13q12_12',
#'DUP13q12_12',
#'DEL17p12',
#'TAR_dup',
'DEL1q21_1',
'DUP1q21_1',
'DEL22q11_2',
'DUP22q11_2',
'DEL16p11_2',
'DUP16p11_2',
'SZ',
'BIP',
'ASD',
'ADHD',
'IBD'
]
prs = ['Stand_PRS_newCDG2_ukbb',
'Stand_PRS_ASD',
'Stand_PRS_SCZwave3',
#'Stand_PRS_IQ',
'Stand_PRS_MDD',
#'Stand_PRS_LDL',
#'Stand_PRS_CKD',
'Stand_PRS_BIP',
#'Stand_PRS_height',
#'Stand_PRS_BMI'
]
cont = prs + ['fluid_intelligence_score_all','Neuroticism']
#############
# LOAD DATA #
#############
null_models_mc = []
beta_maps_mc = []
for group in all_groups:
null_models_mc.append(np.load(n_path_mc.format(group)))
beta_maps_mc.append(pd.read_csv(b_path_mc.format(group))['betas'])
for group in cont:
null_models_mc.append(np.load(n_path_mc_cont.format(group)))
if (group in ['CT','SA','Vol','fluid_intelligence_score_all','Gfactor','Neuroticism']):
beta_maps_mc.append(pd.read_csv(b_path_mc_cont.format(group+'_z'))['betas'])
else:
beta_maps_mc.append(pd.read_csv(b_path_mc_cont.format(group))['betas'])
###################
# MEAN TOP DECILE #
###################
# Get mean top decile of null models
mtd_null = np.zeros((len(null_models_mc),len(null_models_mc[0])))
# For each null model
for i,_ in enumerate(null_models_mc):
label = (all_groups + cont)[i]
print(f"Getting null model of MTD for {label}...")
mod = null_models_mc[i] # 5000x2080
# For each iteration (5000)
for j in range(len(null_models_mc[0])):
rank = pd.qcut(np.abs(mod[j,:]),10,labels=False)
decile = []
for k in range(mod.shape[1]):
if rank[k]==9:
decile.append(np.abs(mod[j,:][k]))
mean_top_dec = np.mean(decile)
mtd_null[i,j] = mean_top_dec
print('Done!')
mtd_null = pd.DataFrame(np.transpose(mtd_null),columns=all_groups+cont)
mtd_null.to_csv(os.path.join(path_out,'null_dist_mtd_17-03-22.csv'))
print('Getting actual MTD values & calculating significance...')
mtd = []
p_val_mtd = []
for i,label in enumerate(all_groups+cont):
rank = pd.qcut(np.abs(beta_maps_mc[i]),10,labels=False)
decile = []
for k in range(beta_maps_mc[i].shape[0]):
if rank[k]==9:
decile.append(np.abs(beta_maps_mc[i])[k])
mean_top_dec = np.mean(decile)
mtd.append(mean_top_dec)
p = p_permut(mean_top_dec,mtd_null[label].values)
p_val_mtd.append(p)
print('Done!')
mtd_pval = pd.DataFrame(np.array([mtd,p_val_mtd]).transpose(),index=all_groups+cont,columns=['beta_map_mtd','p_permut'])
mtd_pval.to_csv(os.path.join(path_out,'mtd_pval_unstandardized_17-03-22.csv'))