-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsignificance_corr.py
262 lines (213 loc) · 10.5 KB
/
significance_corr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import util
import time
import os
import itertools
from statsmodels.stats.multitest import multipletests
from scipy.stats import pearsonr
from argparse import ArgumentParser
#SEBASTIEN URCHS
def p_permut(empirical_value, permutation_values):
n_permutation = len(permutation_values)
if empirical_value >= 0:
return (np.sum(permutation_values > empirical_value)+1) / (n_permutation + 1)
return (np.sum(permutation_values < empirical_value)+1) / (n_permutation + 1)
def filter_fdr(df,contrasts):
df_filtered = df[(df['pair0'].isin(contrasts)) & (df['pair1'].isin(contrasts))].copy()
_,fdr,_,_ = multipletests(df_filtered['pval'],method='fdr_bh')
df_filtered['fdr_filtered'] = fdr
return df_filtered
def mat_form(df,contrasts,value = 'betamap_corr'):
n = len(contrasts)
d = dict(zip(contrasts,range(n)))
mat = np.zeros((n,n))
for c in contrasts:
#fill out vertical strip of mat
for i in range(n):
if (i == d[c]):
val = 1
else:
val = df[((df['pair0']==c)|(df['pair1']==c))
& ((df['pair0']==contrasts[i])|(df['pair1']==contrasts[i]))][value]
mat[i,d[c]] = val
mat[d[c],i] = val
return pd.DataFrame(mat,columns=contrasts,index=contrasts)
def make_matrices(df,contrasts,fdr = 'fdr_filtered'):
"Param fdr can be set to 'fdr_filtered': FDR is performed using the pvalues only from the chosen contrasts"
" or 'fdr': values taken from FDR performed on full set of 42 contrasts"
if (fdr == 'fdr_filtered'):
df = filter_fdr(df,contrasts)
mat_corr = mat_form(df,contrasts,value = 'betamap_corr')
mat_pval = mat_form(df,contrasts,value = 'pval')
mat_fdr = mat_form(df,contrasts,value = fdr)
return mat_corr,mat_pval,mat_fdr
def get_corr_dist(cases,nulls,path_out,tag='wholeconn'):
# For each unique pair, between the null maps.
n_pairs = int((len(cases))*(len(cases) -1)/2)
corr = np.zeros((n_pairs,5000))
print('Getting correlation between 5000 null maps for {} unique pairs for {} cases...'.format(n_pairs,len(cases)))
pair = []
l = 0
for i in itertools.combinations(cases,2):
for j in range(5000):
corr[l,j] = pearsonr(nulls.loc[i[0]].values[j,:],nulls.loc[i[1]].values[j,:])[0]
pair.append(i)
if (l%50 == 0):
print('{}/{}'.format(l,n_pairs))
l = l + 1
df = pd.DataFrame(corr)
df['pair'] = pair
df.to_csv(os.path.join(path_out,'correlation_dist_{}.csv'.format(tag)))
return df
def get_corr(cases,betas,path_out,tag='wholeconn'):
#For each unique pair, correlation between betamaps. Use standardized betas here (as in rest of paper).
n_pairs = int((len(cases))*(len(cases) -1)/2)
corr = np.zeros(n_pairs)
print('Getting correlation between betamaps for {} unique pairs for {} cases...'.format(n_pairs,len(cases)))
pair = []
l = 0
for i in itertools.combinations(cases,2):
corr[l] = pearsonr(betas.loc[i[0]].values,betas.loc[i[1]].values)[0]
l = l + 1
pair.append(i)
df = pd.DataFrame(corr)
df['pair'] = pair
df.to_csv(os.path.join(path_out,'correlation_betas_{}.csv'.format(tag)))
return df
def get_corr_pval(maps,nulls,betas,path_out,tag='wholeconn'):
df = get_corr_dist(maps,nulls,path_out,tag=tag)
df_bb = get_corr(maps,betas,path_out,tag=tag)
df_bb = df_bb.rename(columns={0:'betamap_corr'})
df_master = df_bb.merge(df,on='pair')
print('Calculating pvals...')
# CALCULATE PVALS
pval = []
for i in df_master.index:
p = p_permut(df_master.loc[i,'betamap_corr'],df_master[range(5000)].loc[i])
pval.append(p)
df_master['pval'] = pval
# ADD LABELS
pair0 = [p[0] for p in df['pair'].tolist()]
pair1 = [p[1] for p in df['pair'].tolist()]
df_master['pair0'] = pair0
df_master['pair1'] = pair1
df_compact = df_master[['pair0','pair1','betamap_corr','pval']]
df_compact.to_csv(os.path.join(path_out,'corr_pval_null_v_null_{}.csv'.format(tag)))
return df_compact
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--n_path_mc",help="path to mc null models dir",dest='n_path_mc')
parser.add_argument("--b_path_mc",help="path to mc betamaps dir",dest='b_path_mc')
parser.add_argument("--path_out",help="path to output directory",dest='path_out')
parser.add_argument("--path_corr",help="path to corr dir",dest='path_corr',default=None)
args = parser.parse_args()
n_path_mc = os.path.join(args.n_path_mc,'{}_null_model_mc.npy')
cont_n_path_mc = os.path.join(args.n_path_mc,'{}_null_model_mc.npy')
b_path_mc = os.path.join(args.b_path_mc,'cc_{}_results_mc.csv')
cont_b_path_mc = os.path.join(args.b_path_mc,'cont_{}_results_mc.csv')
path_out = args.path_out
path_corr = args.path_corr
cases = ['IBD','DEL15q11_2','DUP15q11_2','DUP15q13_3_CHRNA7','DEL2q13','DUP2q13','DUP16p13_11','DEL13q12_12','DUP13q12_12',
'DEL17p12','TAR_dup','DEL1q21_1','DUP1q21_1','DEL22q11_2','DUP22q11_2','DEL16p11_2','DUP16p11_2',
'SZ','BIP','ASD','ADHD']
prs = ['Stand_PRS_newCDG2_ukbb','Stand_PRS_ASD','Stand_PRS_SCZ','Stand_PRS_MDD','Stand_PRS_IQ',
'Stand_PRS_LDL','Stand_PRS_CKD','Stand_PRS_SA','Stand_PRS_thickness','Stand_PRS_IBD_ukbb'] #'Stand_PRS_height'
cont = prs + ['CT','SA','Vol','fluid_intelligence_score_all','Gfactor','Neuroticism']
maps = cases + cont
#############
# LOAD DATA #
#############
null = []
beta_std = []
for c in cases:
null.append(pd.DataFrame(np.load(n_path_mc.format(c))))
beta_std.append(pd.read_csv(b_path_mc.format(c))['betas_std'].values) #standardized betas
for c in cont:
null.append(pd.DataFrame(np.load(cont_n_path_mc.format(c))))
if c not in prs:
c = '{}_z'.format(c)
beta_std.append(pd.read_csv(cont_b_path_mc.format(c))['betas_std'].values) #standardized betas
betamaps_std = pd.DataFrame(beta_std,index=maps)
nullmodels = pd.concat(null,keys=maps)
#####################
# MAKE REGION MASKS #
#####################
mask = np.tri(64,k=0,dtype=bool)
THAL = np.zeros((64,64),bool)
THAL[:,3] = True
THAL_mask = THAL + np.transpose(THAL)
THAL_mask = np.tril(THAL_mask)
THAL_mask = THAL_mask[mask]
MOTnet_dl = np.zeros((64,64),bool)
MOTnet_dl[:,55] = True
MOTnet_dl_mask = MOTnet_dl + np.transpose(MOTnet_dl)
MOTnet_dl_mask = np.tril(MOTnet_dl_mask)
MOTnet_dl_mask = MOTnet_dl_mask[mask]
###########################################
# LOAD READY CORRELATIONS & DISTRIBUTIONS #
###########################################
if path_corr is not None:
print('Loading ready correlations & distributions...')
df_wc = pd.read_csv(os.path.join(path_corr,'corr_pval_null_v_null_wholeconn.csv'))
df_THAL = pd.read_csv(os.path.join(path_corr,'corr_pval_null_v_null_THAL.csv'))
df_MOT = pd.read_csv(os.path.join(path_corr,'corr_pval_null_v_null_MOT.csv'))
else:
####################
# WHOLE CONNECTOME #
####################
print('Creating correlation distributions for whole connectome...')
df_wc = get_corr_pval(maps,nullmodels,betamaps_std,path_out,tag='wholeconn')
############
# THALAMUS #
############
# FILTER MAPS
null_THAL = [n.transpose()[THAL_mask].transpose() for n in null]
beta_std_THAL = [b[THAL_mask] for b in beta_std]
betamaps_std_THAL = pd.DataFrame(beta_std_THAL,index=maps)
nullmodels_THAL = pd.concat(null_THAL,keys=maps)
print('Creating correlation distributions for THAL...')
df_THAL = get_corr_pval(maps,nullmodels_THAL,betamaps_std_THAL,path_out,tag='THAL')
#############
# MOTnet_DL #
#############
# FILTER MAPS
null_MOT = [n.transpose()[MOTnet_dl_mask].transpose() for n in null]
beta_std_MOT = [b[MOTnet_dl_mask] for b in beta_std]
betamaps_std_MOT = pd.DataFrame(beta_std_MOT,index=maps)
nullmodels_MOT = pd.concat(null_MOT,keys=maps)
print('Creating correlation distributions for MOTnet_DL...')
df_MOT = get_corr_pval(maps,nullmodels_MOT,betamaps_std_MOT,path_out,tag='MOT')
#################
# MAKE MATRICES #
#################
print('Preparing correlation matrices...')
# WHOLE CONNECTOME
subset_WC = ['DEL1q21_1','DUP22q11_2','DEL22q11_2','Stand_PRS_ASD','BIP','SZ','Neuroticism',
'Stand_PRS_MDD','ASD','Stand_PRS_SCZ','DEL15q11_2','DUP16p11_2','DEL16p11_2',
'DUP1q21_1','Stand_PRS_SA','SA','CT','Gfactor','fluid_intelligence_score_all','Stand_PRS_IQ']
corr,pval,fdr = make_matrices(df_wc,subset_WC,fdr='fdr_filtered')
corr.to_csv(os.path.join(path_out,'FC_corr_fig4_wholebrain_mc_null_v_null.csv'))
pval.to_csv(os.path.join(path_out,'FC_corr_pval_fig4_wholebrain_mc_null_v_null.csv'))
fdr.to_csv(os.path.join(path_out,'FC_corr_fdr_filtered_fig4_wholebrain_mc_null_v_null.csv'))
# THALAMUS
subset_THAL = ['CT','Gfactor','fluid_intelligence_score_all','Stand_PRS_IQ','Stand_PRS_SA',
'SA','Stand_PRS_ASD','DUP16p11_2','DEL1q21_1','DUP22q11_2','DEL16p11_2',
'DUP1q21_1','DEL22q11_2','BIP','SZ','Neuroticism','ASD','DEL15q11_2',
'Stand_PRS_SCZ','Stand_PRS_MDD']
corr_THAL,pval_THAL,fdr_THAL = make_matrices(df_THAL,subset_THAL,fdr='fdr_filtered')
corr_THAL.to_csv(os.path.join(path_out,'FC_corr_fig5_THAL_mc_null_v_null.csv'))
pval_THAL.to_csv(os.path.join(path_out,'FC_corr_pval_fig5_THAL_mc_null_v_null.csv'))
fdr_THAL.to_csv(os.path.join(path_out,'FC_corr_fdr_filtered_fig5_THAL_mc_null_v_null.csv'))
# MOTnet_DL
subset_MOT = ['CT','Gfactor','Stand_PRS_IQ','fluid_intelligence_score_all','SA',
'Stand_PRS_SA','Stand_PRS_ASD','DUP1q21_1','DUP16p11_2','DEL16p11_2','Neuroticism',
'Stand_PRS_MDD','DEL22q11_2','BIP','SZ','DEL15q11_2','Stand_PRS_SCZ','ASD',
'DUP22q11_2','DEL1q21_1']
corr_MOT,pval_MOT,fdr_MOT = make_matrices(df_MOT,subset_MOT,fdr='fdr_filtered')
corr_MOT.to_csv(os.path.join(path_out,'FC_corr_fig6_MOT_mc_null_v_null.csv'))
pval_MOT.to_csv(os.path.join(path_out,'FC_corr_pval_fig6_MOT_mc_null_v_null.csv'))
fdr_MOT.to_csv(os.path.join(path_out,'FC_corr_fdr_filtered_fig6_MOT_mc_null_v_null.csv'))
print('Done!')