-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbutterfly.py
99 lines (84 loc) · 3 KB
/
butterfly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import tensorflow as tf
import numpy as np
import streamlit as st
from tensorflow.keras.models import load_model
from streamlit_option_menu import option_menu
import openai
st.set_page_config(page_title="Butterfly Image Classification", page_icon="favicon.png", layout="centered", initial_sidebar_state="auto", menu_items=None)
openai.api_key= st.secrets["YOUR API KEY"]
loaded_model = load_model('butterflyresnet50.hdf5')
dataset= tf.keras.preprocessing.image_dataset_from_directory(
'train',
shuffle=True,
image_size=(224,224),
batch_size=32
)
class_names = dataset.class_names
def prediction(image):
img = tf.keras.preprocessing.image.load_img(image,target_size=(224, 224))
img_array = tf.expand_dims(tf.keras.preprocessing.image.img_to_array(img), 0)
score = tf.nn.softmax(loaded_model.predict(img_array))
return(class_names[np.argmax(score)].upper(),img)
def clear():
clr_btn= st.button("Clear")
if clr_btn:
st.experimental_singleton.clear()
def tabs(image):
if image != None:
predict = st.button("Predict")
if predict:
butterfly, show_img = prediction(image)
html_str = f"""
<style>
p.a {{
font: bold 25px Source Sans Pro;
}}
</style>
<br>
<center>
<p class="a">{butterfly} BUTTERFLY</p>
</center>
"""
st.markdown(html_str, unsafe_allow_html=True)
col1, col2, col3 = st.columns([3, 5, 3])
col2.image(show_img, use_column_width=True)
with st.spinner('Loading...'):
break_line()
result = openai.Completion.create(engine="text-davinci-003", prompt= f'give me basic biological information about {butterfly} butterfly with subtitles within hundred words', max_tokens=500)
st.write(result.choices[0].text)
clear()
def break_line():
html_str = f"""
<br>
"""
st.markdown(html_str, unsafe_allow_html=True)
def footer_dis():
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
#MAIN PROGRAM
footer_dis()
tit1, tit2, tit3 = st.columns([1, 5, 1])
tit2.header("Butterfly Image Classification")
break_line()
col1, col2, col3 = st.columns([4, 5, 4])
col2.image("logo.gif", use_column_width=True)
break_line()
selected = option_menu(
menu_title= None,
options= ["Upload","Camera"],
icons= ["image","camera"],
menu_icon= "cast",
default_index= 0,
orientation= "horizontal"
)
if selected =="Camera":
cam_img = st.camera_input("Take a Picture")
tabs(cam_img)
if selected =="Upload":
upload_img = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
tabs(upload_img)