-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
337 lines (274 loc) · 12.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import os
import socket
import logging
from timeit import default_timer as timer
from tqdm import tqdm
from tqdm.contrib.logging import logging_redirect_tqdm # For terminal print
from copy import deepcopy
import gc
import torch
import numpy as np
import math
from omegaconf import OmegaConf
from hydra.utils import instantiate, get_class
import util.cfg # For Omegaconf customization
from data.tensordataset import TensorDataset, DataLoader, random_split
from losses import get_loss_step_fn
from util.run_utils import TrainState, restore_ckpt, save_ckpt, set_seed
from util.vis import earth_plot, plot_tori, plot_mesh, plot_so3, plot_hyperbolic, ramachandran_plot
from util.loggers_pl import LoggerCollection
log = logging.getLogger(__name__)
def run(cfg):
def train(train_state, best_val=False):
best_logp = -200
loss_fn = instantiate(cfg.loss, mix=mix)
train_step_fn = get_loss_step_fn(loss_fn, clip_grad_norm=cfg.grad_norm, lr_sched=cfg.lr_sched)
tbar = tqdm(
range(train_state.step, cfg.steps),
total=cfg.steps - train_state.step,
bar_format="{desc}{bar}{r_bar}",
mininterval=1,
)
train_time = timer()
total_train_time = 0
for _ in tbar:
batch = next(train_ds)
train_state, lossf, lossb = train_step_fn(train_state, batch.to(device))
if torch.isnan(lossf+lossb).any():
log.warning("Loss is nan")
return train_state, best_logp, False
step = train_state.step
if step % 10 == 0:
logger.log_metrics({"train/loss_f": lossf.item()}, step)
logger.log_metrics({"train/loss_b": lossb.item()}, step)
tbar.set_description(f"F: {lossf:.2f} | B: {lossb:.2f}")
if step % cfg.val_freq == 0:
logger.log_metrics(
{"train/time_per_it": (timer() - train_time) / cfg.val_freq}, step
)
total_train_time += timer() - train_time
eval_time = timer()
if cfg.train_val:
logp = evaluate(train_state, "val", step)
logger.log_metrics({"val/time_per_it": (timer() - eval_time)}, step)
if best_val:
if logp > best_logp:
best_logp = logp
save_ckpt(ckpt_path, train_state)
else:
save_ckpt(ckpt_path, train_state)
gc.collect()
# NOTE: For observation
if best_val and step % (cfg.val_freq * 10) == 0:
saved_state = restore_ckpt(ckpt_path, deepcopy(train_state), device)
evaluate(saved_state, "test", saved_state.step, best_logp=best_logp)
if step > saved_state.step + cfg.patience:
return train_state, best_logp, True
if cfg.train_plot and step % cfg.plot_freq == 0:
generate_plots(train_state, "val", step=step)
train_time = timer()
logger.log_metrics({"train/total_time": total_train_time}, step)
return train_state, best_logp, True
def evaluate(train_state, stage, step, **kwargs):
try:
dataset = eval_ds if stage == "val" else test_ds
modelf = train_state.modelf
modelb = train_state.modelb
emaf = train_state.emaf
emab = train_state.emab
emaf.copy_to(modelf.parameters())
emab.copy_to(modelb.parameters())
likelihood_fn = likelihood.get_log_prob(modelf, modelb)
logp, nfe, N = 0.0, 0.0, 0
tot = 0
if hasattr(dataset, "__len__"):
for batch in dataset:
if len(batch)>0:
logp_step, nfe_step = likelihood_fn(batch.to(device))
logp += logp_step.sum()
nfe += nfe_step
N += logp_step.shape[0]
else:
dataset.batch_dims = cfg.eval_batch_size
num_rounds = round(20_000 / cfg.eval_batch_size)
for i in range(num_rounds):
batch = next(dataset)
logp_step, nfe_step = likelihood_fn(batch.to(device))
logp += logp_step.sum()
nfe += nfe_step
N += logp_step.shape[0]
tot += logp_step.shape[0]
dataset.batch_dims = cfg.batch_size
logp /= N
nfe /= len(dataset) if hasattr(dataset, "__len__") else num_rounds
logger.log_metrics({f"{stage}/logp": logp}, step)
logger.log_metrics({f"{stage}/nfe": nfe}, step)
with logging_redirect_tqdm():
if stage == "test" and cfg.best_val:
log.info(f">>> [Epoch {step:06d}] | Val logp={kwargs['best_logp']:.3f} | "
f"Test logp={logp:.3f} | nfe: {nfe:.1f}")
else:
log.info(f"[Epoch {step:06d}] {stage} logp: {logp:.3f} | nfe: {nfe:.1f}")
logger.save()
return logp
except:
return -10000
def generate_plots(train_state, stage, step=None):
try:
modelf = train_state.modelf
modelb = train_state.modelb
emaf = train_state.emaf
emab = train_state.emab
emaf.copy_to(modelf.parameters())
emab.copy_to(modelb.parameters())
fdrift_fn = mix.get_drift_fn(modelf)
bdrift_fn = mix.rev().get_drift_fn(modelb)
sde = mix.approx(fdrift_fn, bdrift_fn, cfg.use_pode)
likelihood_fn = likelihood.get_log_prob(modelf, modelb)
log_prob = lambda x: likelihood_fn(x)[0]
if cfg.name == 'so3':
plot_args = {'N': 50, 'surf_cnt': 15, 'pmax': 12.0, 'pmin': -5.0}
plt = plot_so3(test_ds, log_prob, cfg.data_dir, **plot_args)
elif cfg.name == 'hyperbolic':
plt = plot_hyperbolic(test_ds, log_prob)
elif cfg.name in ['general', 'glycine', 'proline', 'prepro']:
plt = ramachandran_plot(test_ds, log_prob, device=device)
else:
NUM_SAMPLES = 2**14
shape = (cfg.sample_batch_size,) #(cfg.batch_size,)
sampler = instantiate(cfg.sampler, sde=sde, shape=shape,
N=1000, eps=cfg.eps, device=device)
num_rounds = math.ceil(NUM_SAMPLES / shape[0])
samples = []
for i in tqdm(range(num_rounds), position=1, leave=False):
samples.append(sampler(prior_samples=None))
samples = torch.cat(samples, dim=0)
prop_in_M = manifold.belongs(samples, atol=1e-4).sum() / samples.shape[0]
if prop_in_M < 0.999:
log.info(f"Prop samples in M = {100 * prop_in_M.item():.1f}%")
if cfg.name in ['flood', 'fire', 'earthquake', 'volcano']:
logp = log_prob(samples)
plt = earth_plot(cfg.dataset.name, train_ds, test_ds, samples, logp)
elif cfg.name == 'rna':
data_samples = train_ds.dataset.dataset.data
train_dix = train_ds.dataset.indices
plt = plot_tori(data_samples[train_dix], samples)
elif cfg.name == 'htori':
data_samples = eval_ds.sample(NUM_SAMPLES)
plt = plot_tori(data_samples, samples)
elif cfg.name in ['bunny', 'spot']:
log_dir = f'logs/version_{logger.version}'
save_path = os.path.join(*[run_path, log_dir, 'images'])
logprobs = []
for mv in tqdm(torch.split(manifold.vt, 10000), position=1, leave=False):
logprobs.append(log_prob(mv))
logprobs = np.concatenate(logprobs, axis=0)
logp = np.exp(logprobs)
plt = plot_mesh(cfg.name,
manifold.vn, manifold.fn,
samples, logp,
save_path, step
)
else:
raise NotImplementedError(f'Exp: {cfg.name} plot not implemented.')
if plt is not None:
logger.log_plot(f"", plt, step)
except:
pass
### Main
log.info(cfg)
if torch.cuda.is_available():
# NOTE: Multi-gpu not enabled due to torch.vmap
device = 'cuda:0'
else:
device = 'cpu'
log.info(f"Torch devices: {device}")
log.info("Stage : Start")
run_path = os.getcwd()
# log.info(f"run_path: {run_path}")
log.info(f"hostname: {socket.gethostname()}")
ckpt_path = os.path.join(run_path, cfg.ckpt_dir)
os.makedirs(ckpt_path, exist_ok=True)
loggers = [instantiate(logger_cfg) for logger_cfg in cfg.logger.values()]
logger = LoggerCollection(loggers)
logger.log_hyperparams(OmegaConf.to_container(cfg, resolve=True))
log.info(f"SEED: {cfg.seed}")
set_seed(cfg.seed)
log.info("Stage : Instantiate dataset")
dataset = instantiate(cfg.dataset)
if isinstance(dataset, TensorDataset):
# split and wrapp dataset into dataloaders
if cfg.name in ['volcano', 'earthquake', 'flood', 'fire', 'spot', 'bunny']:
train_ds, eval_ds, test_ds = random_split(dataset, lengths=cfg.splits)
elif cfg.name in ['general', 'glycine', 'proline', 'prepro', 'rna']:
N = len(dataset)
N_val = N_test = N // 10
N_train = N - N_val - N_test
train_ds, eval_ds, test_ds = torch.utils.data.random_split(
dataset,
[N_train, N_val, N_test],
generator=torch.Generator().manual_seed(cfg.seed),
)
else:
raise NotImplementedError(f'Exp: {cfg.name} not implemented.')
train_ds, eval_ds, test_ds = (
DataLoader(train_ds, batch_dims=cfg.batch_size, shuffle=True),
DataLoader(eval_ds, batch_dims=cfg.eval_batch_size),
DataLoader(test_ds, batch_dims=cfg.eval_batch_size),
)
log.info(
f"Train size: {len(train_ds.dataset)}. Val size: {len(eval_ds.dataset)}. Test size: {len(test_ds.dataset)}"
)
else:
dataset.device = device
train_ds, eval_ds, test_ds = dataset, dataset, dataset
manifold = dataset.manifold
log.info("Stage : Instantiate mixture")
beta_schedule = instantiate(cfg.beta_schedule)
mix = instantiate(cfg.mix, manifold=manifold, beta_schedule=beta_schedule)
likelihood = instantiate(cfg.likelihood, mix=mix)
log.info("Stage : Instantiate model / optimizer")
modelf_cfg = cfg.get('model', cfg.modelf)
modelb_cfg = cfg.get('model', cfg.modelb)
modelf = instantiate(modelf_cfg, manifold=manifold).to(device)
modelb = instantiate(modelb_cfg, manifold=manifold).to(device)
emaf = instantiate(cfg.ema, parameters=modelf.parameters())
emab = instantiate(cfg.ema, parameters=modelb.parameters())
optimizerf = instantiate(cfg.optim, params=modelf.parameters())
optimizerb = instantiate(cfg.optim, params=modelb.parameters())
schedulerf = instantiate(cfg.scheduler, optimizer=optimizerf)
schedulerb = instantiate(cfg.scheduler, optimizer=optimizerb)
# NOTE: state contains actual objects of models, optimizers, and emas,
# not just the parameters
train_state = TrainState(
optimizerf=optimizerf,
schedulerf=schedulerf,
modelf=modelf,
emaf=emaf,
optimizerb=optimizerb,
schedulerb=schedulerb,
modelb=modelb,
emab=emab,
step=0
)
if cfg.resume or cfg.mode == 'test':
train_state = restore_ckpt(ckpt_path, train_state, device)
best_logp = -200.0
else:
save_ckpt(ckpt_path, train_state)
if cfg.mode == "train" or cfg.mode == "all":
if train_state.step == 0 and cfg.test_plot:
# generate_plots(train_state, "test", step=0)
pass
log.info("Stage : Training")
train_state, best_logp, success = train(train_state, cfg.best_val)
if cfg.mode == "test" or (cfg.mode == "all" and success):
train_state = restore_ckpt(ckpt_path, train_state, device)
log.info("Stage : Test")
if cfg.test_test:
evaluate(train_state, "test", step=train_state.step, best_logp=best_logp)
if cfg.test_plot:
generate_plots(train_state, "test", step=train_state.step)
success = True
logger.save()
logger.finalize("success" if success else "failure")