-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
217 lines (186 loc) · 8.65 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import numpy as np
from model import STMA
from utils import AvgrageMeter, accuracy, output_metric, print_args
from criterion import CrossEntropyLoss2d
from save import save_to_pth, load_from_pth
import matplotlib.pyplot as plt
import scipy.io as sio
import argparse
import dataset
import random
import time
import os
parser = argparse.ArgumentParser(description='Multitemporal Crop Mapping')
parser.add_argument('--fix_random', action='store_true', help='fix randomness')
parser.add_argument('--season_flag', action='store_true', help='whether consider temporal effect')
parser.add_argument('--save_model_flag', action='store_true', help='whether save model train parameters')
parser.add_argument('--load_model_flag', action='store_true', help='whether load model saved parameters')
parser.add_argument('--seed', default=0, type=int, help='random seed')
parser.add_argument('--gpu_id', default='1', help='gpu id')
parser.add_argument('--epoches', default=500, type=int, help='number of epoch')
parser.add_argument('--test_freq', default=5, type=int, help='number of eval times')
# dataset parameters
parser.add_argument('--batch_size', default=32, type=int, help='batch size')
parser.add_argument('--patch', default=128, type=int, help='input data size')
parser.add_argument('--dataset', choices=['Germany', 'Germany_S2'], default='Germany', type=str, help='dataset to use')
# model parameters
parser.add_argument('--emb_dim', default=328, type=int, help='embedding size')
parser.add_argument('--mlp_dim', default=16, type=int, help='mlp dimension size')
parser.add_argument('--num_heads', default=4, type=int, help='number of head')
parser.add_argument('--attn_dropout_rate', default=0.0, type=float)
parser.add_argument('--dropout_rate', default=0.1, type=float)
# optimizer parameters
parser.add_argument('--learning_rate', default=1e-3, type=float)
parser.add_argument('--weight_decay', default=0, type=float)
parser.add_argument('--power', default=0.9, type=float)
args = parser.parse_args()
print_args(vars(args))
print("**************************************************")
def train_epoch(model, train_loader, criterion, optimizer):
objs = AvgrageMeter()
top1 = AvgrageMeter()
tar = np.array([])
pre = np.array([])
for batch_idx, (vh_list, vv_list, batch_target) in enumerate(train_loader):
vh_list = vh_list.cuda()
vv_list = vv_list.cuda()
batch_target = batch_target.cuda()
input_tensor = torch.cat((vh_list.unsqueeze(2), vv_list.unsqueeze(2)), dim=2)
optimizer.zero_grad()
batch_pred, batch_aux = model(input_tensor)
loss_main = criterion(batch_pred, batch_target)
loss_aux = criterion(batch_aux, batch_target)
loss = 0.5*loss_main + 0.5*loss_aux
loss=loss_main
loss.backward()
optimizer.step()
prec1, target, pred = accuracy(batch_pred, batch_target, topk=(1,), ignore_index=0)
n = batch_target.shape[0]
objs.update(loss.data, n)
top1.update(prec1[0].data, n)
tar = np.append(tar, target)
pre = np.append(pre, pred)
return top1.avg, objs.avg, tar, pre
def valid_epoch(model, valid_loader):
tar = np.array([])
pre = np.array([])
for batch_idx, (vh_list, vv_list, batch_target) in enumerate(valid_loader):
vh_list = vh_list.cuda()
vv_list = vv_list.cuda()
batch_target = batch_target.cuda()
input_tensor = torch.cat((vh_list.unsqueeze(2), vv_list.unsqueeze(2)), dim=2)
batch_pred, batch_aux = model(input_tensor)
prec1, target, pred = accuracy(batch_pred, batch_target, topk=(1,), ignore_index=0)
tar = np.append(tar, target)
pre = np.append(pre, pred)
return tar, pre
def test_epoch(model, test_loader):
label_total = []
label_gt = []
for batch_idx, (vh_list, vv_list, batch_target) in enumerate(test_loader):
vh_list = vh_list.cuda()
vv_list = vv_list.cuda()
batch_target = batch_target.cuda()
input_tensor = torch.cat((vh_list.unsqueeze(2), vv_list.unsqueeze(2)), dim=2)
output_label, feature = model(input_tensor)
label = batch_target[0].cpu().detach().numpy()
pred = output_label.cpu().detach().numpy().transpose(0, 2, 3, 1)
seg_pred = np.asarray(np.argmax(pred, axis=3), dtype = np.uint8)
label_total.append(seg_pred)
label = batch_target.cpu().detach().numpy()
label_gt.append(label)
return label_total, label_gt
def main():
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_id)
if torch.cuda.is_available():
print('GPU is true')
print('Cuda Version: {}'.format(torch.version.cuda))
print('Using GPU: {}'.format(args.gpu_id))
else:
print('CPU is true')
print("**************************************************")
if args.fix_random:
manualSeed = args.seed
np.random.seed(manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)
torch.cuda.manual_seed(manualSeed)
torch.cuda.manual_seed_all(manualSeed)
cudnn.deterministic = True
cudnn.benchmark = False
else:
cudnn.benchmark = True
# create dataset and model
train_loader, valid_loader, test_loader, num_classes, band, ColumnOver, RowOver, row, col = dataset.getdata(args.dataset, args.patch, args.batch_size)
# create model
print("Create model")
model = STMA(
input_band = band,
emb_dim = args.emb_dim,
mlp_dim = args.mlp_dim,
num_heads = args.num_heads,
num_classes = num_classes,
attn_dropout_rate = args.attn_dropout_rate,
dropout_rate = args.dropout_rate)
model = model.cuda()
# criterion
criterion = CrossEntropyLoss2d(ignore_index = -100).cuda()
# optimizer
optimizer = torch.optim.Adam(model.parameters(), lr = args.learning_rate, weight_decay = args.weight_decay)
print("Start training")
tic = time.time()
for epoch in range(args.epoches):
model.train()
train_acc, train_obj, tar_t, pre_t = train_epoch(model, train_loader, criterion, optimizer)
OA1, mF1, mIoU1 = output_metric(tar_t, pre_t)
print("Epoch: {:03d} train_loss: {:.4f} train_acc: {:.4f}"
.format(epoch+1, train_obj, train_acc))
print("OA: {:.4f} mF1: {:.4f} mIoU: {:.4f}"
.format(OA1, mF1, mIoU1))
print("************************************************")
if (epoch % args.test_freq == 0) | (epoch == args.epoches - 1):
model.eval()
tar_v, pre_v = valid_epoch(model, valid_loader)
OA2, mF2, mIoU2 = output_metric(tar_v, pre_v)
print("*****************Testing Result****************")
print("OA: {:.4f} mF1: {:.4f} mIoU: {:.4f}"
.format(OA2, mF2, mIoU2))
print("************************************************")
toc = time.time()
print("Running Time: {:.2f}".format(toc-tic))
print("**************************************************")
if args.save_model_flag:
model_name = ["STMA"]
RESULT_DIR = "./model_save/{}/".format("_".join(model_name))
save_to_pth(model, os.path.join(RESULT_DIR, "stma.pth"))
if args.load_model_flag:
model_name = ["STMA"]
RESULT_DIR = "./model_save/{}/".format("_".join(model_name))
load_from_pth(model, os.path.join(RESULT_DIR, "stma.pth"))
# test phase and output the final segmentation map
model.eval()
label_total, label_gt = test_epoch(model, test_loader)
label_full = dataset.get_full_label(label_total, (row, col), args.patch, RowOver, ColumnOver)
label_full_gt = dataset.get_full_label(label_gt, (row, col), args.patch, RowOver, ColumnOver)
label_full_gt_reshape = label_full_gt.reshape(row*col)
label_full_reshape = label_full.reshape(row*col)
# evaluate label result
print("******************Final Result********************")
OA_final, mF1_final, mIoU_final = output_metric(label_full_gt_reshape, label_full_reshape, mode=True)
print("OA: {:.4f}, mF1: {:.4f}, mIoU: {:.4f}".format(OA_final, mF1_final[0], mIoU_final))
print("**************************************************")
print("Each F1: {}".format(mF1_final[1:]))
print("**************************************************")
print("**************************************************")
print(np.unique(label_full))
print("**************************************************")
plt.imshow(label_full)
plt.xticks([])
plt.yticks([])
plt.show()
sio.savemat('results.mat',{'output': label_full, 'label':label_full_gt})
if __name__ == '__main__':
main()