-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathanalysis_multi_nC.py
executable file
·128 lines (94 loc) · 4.32 KB
/
analysis_multi_nC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: Hankui Peng
"""
## import necessary modules
# system
from skimage.segmentation import mark_boundaries
from skimage import io
import skimage
from glob import glob
import numpy as np
import argparse
import random
import torch
import time
import sys
import cv2
import os
# local
sys.path.insert(0, "../pybuild")
sys.path.insert(0, "pybuild")
from utils.analysis_util import *
from utils.hed_edges import *
from model.network import *
import hers_superpixel
## input arguments
parser = argparse.ArgumentParser(description='DAL-HERS Superpixel Segmentation on a folder of images',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--pretrained', default='./pretrained/DAL_loss=bce-rgb_date=23Feb2021.tar', help='path to the pretrained model')
parser.add_argument('--input_dir', default='./sample_imgs/input/', help='path to images folder')
parser.add_argument('--output_dir', default='./sample_imgs/output/', help='path to output folder')
parser.add_argument('--output_suff', default='', help='suffix to the output file')
parser.add_argument('--edge', default=False, help='whether to incorporate edge information')
parser.add_argument('--device', default=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"), help='default device (CPU / GPU)')
args = parser.parse_args()
random.seed(100)
## main function
def main():
data_type = np.float32
# read all the image files in the folder
tst_lst = glob(args.input_dir + '*.jpg')
tst_lst.sort()
# load the model
network_data = torch.load(args.pretrained, map_location=args.device)
model = DAL(nr_channel=8, conv1_size=7)
model.load_state_dict(network_data['state_dict'])
model.eval()
# for each image:
for n in range(len(tst_lst)):
## input image
img_file = tst_lst[n]
imgId = os.path.basename(img_file)[:-4]
image = cv2.imread(img_file)
input_img = image.astype(data_type)
h, w, ch = image.shape
## input affinities
affinities = ProduceAffMap(img_file, model)
input_affinities = affinities
## HED edge information
if args.edge:
Input = torch.FloatTensor(numpy.ascontiguousarray(numpy.array(PIL.Image.open(img_file))[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32)))*(1.0 / 255.0)
edge_prob = estimate(Input)
input_edge = np.array(edge_prob.squeeze(0), dtype=data_type)
else:
input_edge = np.ones((h, w), dtype=data_type) # Provide no external edge information by default
## build the hierarchical segmentation tree
start = time.time()
bosupix = hers_superpixel.BoruvkaSuperpixel()
bosupix.build_2d(input_img, input_affinities, input_edge)
end = time.time()
## segmentation given various numbers of superpixels
nC_seq = [v for v in range(200, 1201, 200)]
for nC in nC_seq:
# obtain the segmentation labels
sp_label = bosupix.label(nC)
output_img = np.max(image) * mark_boundaries(image, sp_label.astype(int), color = (0,0,255)) # candidate color choice: (220,20,60)
# output the label map as a csv file
save_csv_path = args.output_dir + str(nC) + '/csv/'
if not os.path.isdir(save_csv_path):
os.makedirs(save_csv_path)
label_map_path = save_csv_path + imgId + args.output_suff + '.csv'
np.savetxt(label_map_path, sp_label.astype(int), fmt='%i', delimiter=",")
# output the visualisation
save_png_path = args.output_dir + str(nC) + '/png/'
if not os.path.isdir(save_png_path):
os.makedirs(save_png_path)
spixl_save_name = save_png_path + imgId + args.output_suff + '.png'
cv2.imwrite(spixl_save_name, output_img)
# save the run times
elapsed_time = (end - start)*1000
print("Just finished the {0}th image for nC={1}, with HERS run time of {2:.2f} ms".format(int(n), nC, elapsed_time))
if __name__ == '__main__':
main()