-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathEMG_Model.py
203 lines (147 loc) · 6.7 KB
/
EMG_Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from sklearn.externals import joblib
import numpy as np
import pandas as pd
from scipy.signal import butter,lfilter,filtfilt
from scipy import stats
from sklearn import svm
class EMG_Model():
def filteration (self,data,sample_rate=2000.0,cut_off=20.0,order=5,ftype='highpass'):
nyq = 0.5 * sample_rate
b,a=butter(order,cut_off/nyq,btype=ftype)
d= lfilter(b,a,data,axis=0)
return pd.DataFrame(d)
def mean_std_normalization (self,df):
m = df.mean(axis=0)
s =df.std(axis=0)
normalized_df =df/m
return m,s,normalized_df
def MES_analysis_window (self,df,width,tau,win_num):
df_2=pd.DataFrame()
start= win_num*tau
end= start+width
df_2=df.iloc[start:end]
return end,df_2
def prepare_df(self,rep,normalized_emg):
df=normalized_emg.loc[rep]
df=df.reset_index()
LL=df['label']
df=df.drop(['rep','label'],1)
return df,LL
def features_extraction (self,df,th=0):
#F1 : mean absolute value (MAV)
MAV=abs(df.mean(axis=0))
MAV=list(MAV)
WL = []
SSC= []
ZC = []
for col,series in df.iteritems():
#F2 : wave length (WL)
s=abs(np.array(series.iloc[:-1])- np.array(series.iloc[1:]))
WL_result=np.sum(s)
WL.append( WL_result)
#F3 : zero crossing(ZC)
_1starray=np.array(series.iloc[:-1])
_2ndarray=np.array(series.iloc[1:])
ZC.append(((_1starray*_2ndarray<0) & (abs(_1starray - _2ndarray)>=th) ).sum())
#F4 : slope sign change(SSC)
_1st=np.array(series.iloc[:-2])
_2nd=np.array(series.iloc[1:-1])
_3rd=np.array(series.iloc[2:])
SSC.append(((((_2nd - _1st)*(_2nd - _3rd))>0) &(((abs(_2nd - _1st))>=th) | ((abs(_2nd - _3rd))>=th))).sum())
features_array=np.array([MAV,WL,ZC,SSC]).T
return features_array
def get_predictors_and_outcomes(self,intended_movement_labels,rep,emg,label_series,width=512,tau=128):
x=[];y=[];
end=0; win_num=0;
while((len(emg)-end) >= width):
end,window_df=self.MES_analysis_window(emg,width,tau,win_num)
win_num=win_num + 1
ff=self.features_extraction(window_df)
x.append(ff)
expected_labels=label_series.iloc[win_num*tau: ((win_num*tau)+width)]
mode,count=stats.mode(expected_labels)
y.append(mode)
predictors_array=np.array(x)
outcomes_array=np.array(y)
nsamples, nx, ny = predictors_array.shape
predictors_array_2d = predictors_array.reshape((nsamples,nx*ny))
return np.nan_to_num(predictors_array_2d),np.nan_to_num(outcomes_array)
def get_predictors(self,emg,width=512,tau=128):
x=[];
end=0; win_num=0;
while((len(emg)-end) >= width):
end,window_df=self.MES_analysis_window(emg,width,tau,win_num)
win_num=win_num + 1
ff=self.features_extraction(window_df)
x.append(ff)
predictors_array=np.array(x)
nsamples, nx, ny = predictors_array.shape
predictors_array_2d = predictors_array.reshape((nsamples,nx*ny))
return np.nan_to_num(predictors_array_2d)
def prepare_data(self,intended_movement_labels=[0,1,2,3],rows=8000):
emg_set = {}
e1 = pd.read_csv( self.path1, header=None )
e2 = pd.read_csv( self.path2, header=None )
e3 = pd.read_csv( self.path3, header=None )
e4 = pd.read_csv( self.path4, header=None )
rows = min( e1.shape[0], e2[1].shape[0], e3[2].shape[0], e4[3].shape[0] )
e1 = pd.read_csv( self.path1, nrows=rows, header=None )
e2 = pd.read_csv( self.path2, nrows=rows, header=None )
e3 = pd.read_csv( self.path3, nrows=rows, header=None )
e4 = pd.read_csv( self.path4, nrows=rows, header=None )
e = [e1, e2, e3, e4]
rep = []
reps =rows // 6 if rows % 6 == 0 else (rows //6)+1
for i in range(1,7):
for j in range(0,reps):
rep.append(i)
rep = rep[:rows]
for i in intended_movement_labels:
#emg_set[i] = pd.read_csv('models/' +str(i)+".csv" ,nrows =rows,header=None)
emg_set[i] =e[i]
emg_set[i]['label'] = i
emg_set[i].columns = [1,2,3,4,5,6,7,8,'label']
emg_set[i]['rep'] = rep
data = pd.DataFrame()
for i in intended_movement_labels:
data = pd.concat([data,emg_set[i]])
data = data.drop_duplicates().reset_index(drop=True)
dataLabel=data['label']
dataRep=data['rep']
data=data.drop(['label','rep'],1)
normalized_emg=self.filteration (data,sample_rate=200)
normalized_emg['label'] = dataLabel
normalized_emg['rep'] = dataRep
normalized_emg=normalized_emg.set_index('rep')
rep_train=[1,3,6,4]
normalized_emg_train,LL_train=self.prepare_df(rep_train,normalized_emg)
predictors_train,outcomes_train=self.get_predictors_and_outcomes(intended_movement_labels,rep_train,normalized_emg_train,LL_train)
#prepare test part
rep_test=[2,5]
normalized_emg_test,LL_test=self.prepare_df(rep_test,normalized_emg)
#normalized_emg_test
predictors_test,outcomes_test=self.get_predictors_and_outcomes(intended_movement_labels,rep_test,normalized_emg_test,LL_test)
predictors_test = self.get_predictors(normalized_emg_test)
return predictors_train,outcomes_train,predictors_test,outcomes_test
def svm_model(self,predictors_train,outcomes_train):
model=svm.LinearSVC(dual=False) # at C= 0.05:0.09 gives little increase in accuracy, around 0.4%
model.fit(predictors_train,outcomes_train)
return model
def accuracy(self,model):
return model.score(self.predictors_test,self.outcomes_test)*100
def save_model(self,model,filename):
joblib.dump(model, filename)
def all_steps(self,path1,path2,path3,path4,file_name,movements=[0,1,2,3]):
self.path1=path1
self.path2=path2
self.path3=path3
self.path4=path4
predictors_train,outcomes_train,self.predictors_test,self.outcomes_test = self.prepare_data(movements)
model = self.svm_model(predictors_train,outcomes_train)
#if you wanna accuracy
print (self.accuracy(model))
#save pickle
self.save_model(model,file_name)
if __name__ == '__main__':
e=EMG_Model()
e.all_steps(path1="0.csv",path2="1.csv",path3="2.csv",path4="3.csv",file_name="Hannon.pickle")