-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpml.R
1708 lines (1350 loc) · 55.7 KB
/
pml.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#bookmarks,http://machinelearningmastery.com/author/jasonb/
#pml video links, ?ada and paper referene at last
#add more getMOdelInfo, caret firefox
#metric-roc
#train$times
#svm-caret kernlab-tab
#rf,rpart
#gam
#nb
#boost 4+xg (gbm)
#lda-vedeo ,qda --23 pml video,categorical,cv,table,step,fda,mda
#knn-video
#nn,softmax,algo
#glm-spline,interaction
#factors
#knnimput
#topic modelling
#LDA,lsa
#test on which set
#csvupload,text
#predict
#missclassification, gini,info
#parallel
#weather.csv rattle,iris,luv,faithful,segmrntationdata,BloodBrain,Smarket,crabs,
#MASS::boston(medv),library(ISLR),
#data(BostonHousing),data(BreastCancer),data(Glass),data(Ionosphere),
#data(PimaIndiansDiabetes),data(Sonar)data(Soybean)-linkbook, UCI
#library(AppliedPredictiveModeling),data(abalone)
#data(GermanCredit)caret-logistic
#infert
#library(cluster.datasets),https://cran.r-project.org/web/packages/dendextend/vignettes/Cluster_Analysis.html,
#spherical
#ROC
#summary-rattle like tab NA,unique
#plot 2 most pca,cmdsclaes
#gamboost iris >2 class not working
#data split
#sherical/anescomb data.rd*******
#UCI-adult,letter-wine,yeast
#metric#evaluation- Rsquared,rmse cp,kappa,Accuracy ,,,sensitivity(),
#specificity(),f-score,?confusion.Matrix()****for formulae,last 3-4 bookmarks-logloss
#time-compute cost
#summary(resamples()#################)
#dynamic plots
#use render ui if alternate text
#Repo
#https://journal.r-project.org/archive/2010-1/RJournal_2010-1_Guenther+Fritsch.pdf
library(ElemStatLearn)#data
#different bag
#diff regulari
#rf on sin,spher data,anescombe
names(getModelInfo())
#rf,rpart not work
df <- data.frame(V1=rep(c(10,10,0,0),25)+rnorm(100))
df[,2] <- c(rep(c(10,10,10,0,0,0),16),10,10,10,0)+rnorm(100)
df[,3] <- c(rep(c('0','10'),50))#+rnorm(100))
inTrain <- createDataPartition(y=df$V3, p=0.7, list=FALSE)
training <- df[inTrain,]
testing <- df[-inTrain,]
ggplot2::qplot(V1,V2,data=df,col=V3)
modFit <- train(V3 ~ .,method="rpart",data=training)
modFit
sum(ifelse(predict(modFit$finalModel,testing)==testing$V3,1,0))/100
rattle::fancyRpartPlot(modFit$finalModel)
modFit$finalModel
#circular,spherical****
#rf,rpart not work
df <- data.frame(V1=10*cos(c(seq(0,10,0.1)))+rnorm(101))
df[,2] <- 10*sin(c(seq(0,10,0.1)))+rnorm(101)
df0 <- data.frame(V1=30*cos(c(seq(0,10,0.1)))+rnorm(101))
df0[,2] <- 30*sin(c(seq(0,10,0.1)))+rnorm(101)
df <- rbind(df,df0)
df[,3] <- c(rep('0',101),rep('10',101))#+rnorm(202)
inTrain <- createDataPartition(y=df$V3, p=0.7, list=FALSE)
training <- df[inTrain,]
testing <- df[-inTrain,]
ggplot2::qplot(V1,V2,data=training,col=V3)
modFit <- train(V3 ~ .,method="rpart",data=training)
modFit
sum(abs(predict(modFit$finalModel,testing)-testing$V3))/60
sum(abs(predict(modFit$finalModel)-training$V3))/142
#plot(1:142,predict(modFit$finalModel),type = 'l')
rattle::fancyRpartPlot(modFit$finalModel)
modFit$finalModel
modFit$modelType
##sphere
df<-data.frame(V1=0,V2=0,V3=0)
i<-1;a1 <- 10; b1 <- 15; c1 <-0
for(tht in seq(0,2*pi,0.1)){
for(phi in seq(0,2*pi,0.1)){
df[i,] <- c(a1*cos(tht)*sin(phi)+c1*rnorm(1),a1*sin(tht)*sin(phi)+c1*rnorm(1),a1*cos(phi)+c1*rnorm(1))
i=i+1
}
}
for(tht in seq(0,2*pi,0.1)){
for(phi in seq(0,2*pi,0.1)){
df[i,] <- c(b1*cos(tht)*sin(phi)+c1*rnorm(1),b1*sin(tht)*sin(phi)+c1*rnorm(1),b1*cos(phi)+c1*rnorm(1))
i=i+1
}
}
df[,4] <- c(rep('0',7938/2),rep('10',7938/2))
library(rgl)
plot3d(df$V1,df$V2,df$V3,col=as.numeric(df$V4)+1)
write.csv(df,'spherical.csv')
#########imp
df <- data.frame(V1=1:100+rnorm(100))
df[,2] <- (1:100)/2+rnorm(100)
df[,3] <- c(rep('0',33),rep('5',33),rep('10',33),10)#+rnorm(100)
inTrain <- createDataPartition(y=df$V3, p=0.7, list=FALSE)
training <- df[inTrain,]
testing <- df[-inTrain,]
ggplot2::qplot(V1,V2,data=training,col=V3)
modFit <- train(V3 ~ .,method="rpart",data=training)
modFit
rattle::fancyRpartPlot(modFit$finalModel)
modFit$finalModel
modFit$modelType
inTrain <- createDataPartition(y=iris$Species, p=0.7, list=FALSE)
training <- iris[inTrain,]
testing <- iris[-inTrain,]
#table(iris$Species)
#ggplot2::qplot(Petal.Width,Petal.Length,colour=Species,data=training)
#table(training$Species)
library(caret)
#train_control <- trainControl(method="boot", number=100)
#modFit <- train(Species ~ .,method="rpart",data=training,trControl=train_control)
modFit <- train(Species ~ .,method="rpart",data=training)
#recursive partitioning, regresion & classification tree
modFit
print(modFit$finalModel)
#modFit$results
plot(modFit$finalModel, uniform=TRUE,
main="Classification Tree")
text(modFit$finalModel, use.n=TRUE, all=TRUE, cex=.8)
library(rattle)
fancyRpartPlot(modFit$finalModel)
#install.packages('rpart.plot')
sum(ifelse(predict(modFit,newdata=testing)==testing$Species,1,0))/45
library(rattle)
rattle()#######
?loess
#bagging => same bias, low variance
?bag
getTree()
?train
#xgboost
args(train.default)
args(trainControl)#
#data analyses
library(kernlab)
data(spam)
hist(spam$capitalAve)#############skewed
mean(spam$capitalAve)
sd(spam$capitalAve)############highly variable
#1.so standardise (but use same tranformation{preObj} parameters on test set)
preObj <- preProcess(,method=c('center','scale'))#also knnImpute method
transformed_test <- predict(preObj,testset)
#or
preProcess arg in train()
#2.BoxCox
##########knnImpute
#for factors#################
dummyVars()
#######no varaibility
nearZeroVar()
#########
library(splines)#same on test by predict() not bs()
bs(training$age, df=3)#with lm
############transformations log,pca,boxcox
a <- prcomp(log(x+1))
a$rotation
#or preProcess
expand.grid()
library(caret)
library(klaR)
# load the iris dataset
data(iris)
# define an 80%/20% train/test split of the dataset
split=0.80
trainIndex <- createDataPartition(iris$Species, p=split, list=FALSE)
data_train <- iris[ trainIndex,]
data_test <- iris[-trainIndex,]
# train a naive bayes model
model <- NaiveBayes(Species~., data=data_train)
# make predictions
x_test <- data_test[,1:4]
y_test <- data_test[,5]
predictions <- predict(model, x_test)
# summarize results
confusionMatrix(predictions$class, y_test)
#binary.data() in neuralnet
library(kernlab)###better detail
x <- rbind(matrix(rnorm(120),,2),matrix(rnorm(120,mean=3),,2))
y <- matrix(c(rep(1,60),rep(-1,60)))
svp <- ksvm(x,y,type="C-svc")
plot(svp,data=x)
#points(x,pch = c("o","+")[1:120 %in% svp@SVindex + 1])
svp@SVindex
library(e1071)#caret's lsvmLinear2
#linear-kernlab
#svm
data(iris)
model <- svm(Species ~ ., data = iris)
# alternatively the traditional interface:
x <- subset(iris, select = -Species)
y <- iris[,5]
model <- svm(x, y)
?svm
print(m)
summary(m)
# test with train data
pred <- predict(model, x)
# (same as:)
pred <- fitted(model)
# Check accuracy:
table(pred, y)
# compute decision values and probabilities:
pred <- predict(model, x, decision.values = TRUE)
attr(pred, "decision.values")[1:4,]
plot(model,iris)
# visualize (classes by color, SV by crosses):
plot(cmdscale(dist(iris[,-5])),
col = as.integer(iris[,5]),
pch = c("o","+")[1:150 %in% model$index + 1])
## try regression mode on two dimensions
# create data
x <- seq(0.1, 5, by = 0.05)
y <- log(x) + rnorm(x, sd = 0.2)
# estimate model and predict input values
m <- svm(x, y)
new <- predict(m, x)
# visualize
plot(x, y)
points(x, log(x), col = 2)
points(x, new, col = 4)
#values for the C, the "cost" of the radial kernel. This parameter controls the complexity of the boundary between support vectors. The radial kernel also requires setting a smoothing parameter, sigma.
#For multiclass-classification with k levels, k>2, libsvm uses the 'one-against-one'-approach, in which k(k-1)/2 binary classifiers are trained; the appropriate class is found by a voting scheme.
inTraining <- createDataPartition(mydata[,input$t_f], p=trainprop, list=FALSE)
training.set <- mydata[inTraining,]
Totalvalidation.set <- mydata[-inTraining,]
inTesting <- createDataPartition(Totalvalidation.set[,input$t_f], p=testprop, list=FALSE)
testing.set <- Totalvalidation.set[inTesting,]
validation.set <- Totalvalidation.set[-inTesting,]
# Training SVM Models
library(caret)
library(dplyr) # Used by caret
library(kernlab) # support vector machine
library(pROC) # plot the ROC curves
### Get the Data
# Load the data and construct indices to divide it into training and test data sets.
data(segmentationData) # Load the segmentation data set
trainIndex <- createDataPartition(segmentationData$Case,p=.5,list=FALSE)
trainData <- segmentationData[trainIndex,]
testData <- segmentationData[-trainIndex,]
trainX <-trainData[,4:61] # Pull out the variables for training
sapply(trainX,summary) # Look at a summary of the training data
## SUPPORT VECTOR MACHINE MODEL
# First pass
set.seed(1492)
# Setup for cross validation
ctrl <- trainControl(method="repeatedcv", # 10fold cross validation
repeats=5, # do 5 repititions of cv
summaryFunction=twoClassSummary, # Use AUC to pick the best model
classProbs=TRUE)
#Train and Tune the SVM
svm.tune <- train(x=trainX,
y= trainData$Class,
method = "svmRadial", # Radial kernel
tuneLength = 9, # 9 values of the cost function
preProc = c("center","scale"), # Center and scale data
metric="ROC",
trControl=ctrl)
svm.tune
# Transform data to the format of an SVM package
# Conduct simple scaling on the data
# Consider the RBF kernel K(x, y) = exp (?????||x???y||2)
# Use cross-validation to find the best parameter C and ??
# Use the best parameter C and ?? to train the whole training set5
# Test
#
# In this post, we present a variation of the methodology using R and the caret package. First, we set up for an analysis, loading the segmentation data set from the caret package and using the caret's createDataPartition() function to produce training and test data sets.
# Training SVM Models
library(caret)
library(dplyr) # Used by caret
library(kernlab) # support vector machine
library(pROC) # plot the ROC curves
### Get the Data
# Load the data and construct indices to divide it into training and test data sets.
data(segmentationData) # Load the segmentation data set
trainIndex <- createDataPartition(segmentationData$Case,p=.5,list=FALSE)
trainData <- segmentationData[trainIndex,]
testData <- segmentationData[-trainIndex,]
trainX <-trainData[,4:61] # Pull out the variables for training
sapply(trainX,summary) # Look at a summary of the training data
Next, we carry out a two pass training and tuning process. In the first pass, shown in the code block below, we arbitrarily pick some tuning parameters and use the default caret settings for others. In the trainControl() function we specify 5 repetitions of 10 fold cross validation. in the train() function which actually does the work, we specify the radial kernel using the method parameter and the ROC as the metric for assessing performance. The tuneLength parameter is set to pick 9 arbitrary values for the C, the "cost" of the radial kernel. This parameter controls the complexity of the boundary between support vectors. The radial kernel also requires setting a smoothing parameter, sigma. In this first, pass we let train() use its default method of calculating an analytically derived estimate for sigma. Also note that we instruct train() to center and scale the data before running the analysis with the preProc parameter.
## SUPPORT VECTOR MACHINE MODEL
# First pass
set.seed(1492)
# Setup for cross validation
ctrl <- trainControl(method="repeatedcv", # 10fold cross validation
repeats=5, # do 5 repititions of cv
summaryFunction=twoClassSummary, # Use AUC to pick the best model
classProbs=TRUE)
#Train and Tune the SVM
svm.tune <- train(x=trainX,
y= trainData$Class,
method = "svmRadial", # Radial kernel
tuneLength = 9, # 9 values of the cost function
preProc = c("center","scale"), # Center and scale data
metric="ROC",
trControl=ctrl)
svm.tune
# Second pass
# Look at the results of svm.tune and refine the parameter space
set.seed(1492)
# Use the expand.grid to specify the search space
grid <- expand.grid(sigma = c(.01, .015, 0.2),
C = c(0.75, 0.9, 1, 1.1, 1.25)
)
#Train and Tune the SVM
svm.tune <- train(x=trainX,
y= trainData$Class,
method = "svmRadial",
preProc = c("center","scale"),
metric="ROC",
tuneGrid = grid,
trControl=ctrl)
svm.tune
#Linear Kernel
set.seed(1492)
#Train and Tune the SVM
svm.tune2 <- train(x=trainX,
y= trainData$Class,
method = "svmLinear",
preProc = c("center","scale"),
metric="ROC",
trControl=ctrl)
svm.tune2
rValues <- resamples(list(svm=svm.tune,svm.tune2))
rValues$values
summary(rValues)
bwplot(rValues,metric="ROC",ylab =c("linear kernel", "radial kernel"))
model.matrix()
nnet::class.ind()
data(BloodBrain)
a <- train(bbbDescr, logBBB,'rpart')
b <- train(bbbDescr, logBBB,'lm')
c <- train(bbbDescr, logBBB,'neuralnet')
d <- train(bbbDescr, logBBB,'knn')
e <- train(bbbDescr, logBBB,'gbm')
res <- resamples(list(a,b,c,d,e))
summary(res)
circlize_dendrogram(dend)
t <- summary(y)
dim(t$values)[1]
t$metrics
t$statistics[[1]]
resampleHist()
plot(nb_Mod)
plot(gam_Mod$finalModel)
#class
svm
neuralnet
rf
#reg
svm
#http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-340
data("segmentationData")
trainIndex <- createDataPartition(segmentationData$Case,p=.5,list=FALSE)
trainData <- segmentationData[trainIndex,]
testData <- segmentationData[-trainIndex,]
trainX <-trainData[,4:61]
ctrl <- trainControl(method = 'boot')
ctrl1 <- trainControl(method = 'repeatedcv')
svml <- train(trainX,trainData$Class,method = 'svmLinear',
trControl = ctrl)
max(table(trainData$Class)/length(trainData$Class))#baseline
svml
svml$finalModel
svml$times$everything[1]
confusionMatrix(table(trainData$Class,predict(svml,trainX)))
confusionMatrix(table(testData$Class,predict(svml,testData[,4:61])))
svmr <- train(trainX,trainData$Class,method = 'svmRadial',
trControl = ctrl)
max(table(trainData$Class)/length(trainData$Class))#baseline
svmr
svmr$finalModel
svmr$times$everything[1]
confusionMatrix(table(trainData$Class,predict(svmr,trainX)))
confusionMatrix(table(testData$Class,predict(svmr,testData[,4:61])))
svmp <- train(trainX,trainData$Class,method = 'svmPoly',
trControl = ctrl)
max(table(trainData$Class)/length(trainData$Class))#baseline
svmp
svmp$finalModel
svmp$times$everything[1]
confusionMatrix(table(trainData$Class,predict(svmp,trainX)))
confusionMatrix(table(testData$Class,predict(svmp,testData[,4:61])))
svmrc <- train(trainX,trainData$Class,method = 'svmRadialCost',
trControl = ctrl)
max(table(trainData$Class)/length(trainData$Class))#baseline
svmrc
svmrc$finalModel
svmrc$times$everything[1]
confusionMatrix(table(trainData$Class,predict(svmrc,trainX)))
confusionMatrix(table(testData$Class,predict(svmrc,testData[,4:61])))
svmrw <- train(trainX,trainData$Class,method = 'svmRadialWeights',
trControl = ctrl)
max(table(trainData$Class)/length(trainData$Class))#baseline
svmrw
svmrw$finalModel
svmrw$times$everything[1]
confusionMatrix(table(trainData$Class,predict(svmrw,trainX)))
confusionMatrix(table(testData$Class,predict(svmrw,testData[,4:61])))
svmrs <- train(trainX,trainData$Class,method = 'svmRadialSigma',
trControl = ctrl)
max(table(trainData$Class)/length(trainData$Class))#baseline
svmrs
svmrs$finalModel
svmrs$times$everything[1]
confusionMatrix(table(trainData$Class,predict(svmrs,trainX)))
confusionMatrix(table(testData$Class,predict(svmrs,testData[,4:61])))
summary(resamples(list(svml,svmr,svmp,svmrc,svmrw,svmrs)))#on validation test?
#nnet,BFGS
cl <- makeCluster(3)
registerDoParallel(cl)
z <- train(mydata[,!names(mydata) %in% 'Class'],mydata[,'Class'],method='nnet',
trControl = ctrl)
z
z$finalModel
confusionMatrix(table(mydata[,'Class'],predict(z,mydata[,!names(mydata) %in% 'Class'])))
#maxit,size
nnetTunegrid <- expand.grid(.size = c(3,4,5),
.decay = c(0.08,0.09,0.1,0.12))
z1 <- train(mydata[,!names(mydata) %in% 'Class'],mydata[,'Class'],method='nnet',
trControl = ctrl,tuneGrid = nnetTunegrid)
z1
z1$finalModel
confusionMatrix(table(mydata[,'Class'],predict(z1,mydata[,!names(mydata) %in% 'Class'])))
nnetTunegrid2 <- expand.grid(.size = c(4,5,6),
.decay = c(0.085,0.09,0.095))
z2 <- train(mydata[,!names(mydata) %in% 'Class'],mydata[,'Class'],method='nnet',
trControl = ctrl,tuneGrid = nnetTunegrid2)
z2
z2$finalModel
confusionMatrix(table(mydata[,'Class'],predict(z2,mydata[,!names(mydata) %in% 'Class'])))
nnetTunegrid <- expand.grid(.size = c(6,10),.decay = c(0.07,0.075,0.08))
z1 <- train(mydata[,!names(mydata) %in% 'Class'],mydata[,'Class'],method='nnet',
tuneGrid = nnetTunegrid, maxit = 150)
z1$times$everything
z1
z1$finalModel
confusionMatrix(table(mydata[,'Class'],predict(z1,mydata[,!names(mydata) %in% 'Class'])))
stop_cluster(cl)
#center scale necar?
#verify by searching data-on net
#mydata
svml <- readRDS('svmLinear.rds')
svmr <- readRDS('svmRadial.rds')
lda <- readRDS('lda.rds')
rf <- readRDS('rf.rds')
boostgbm <- readRDS('boostgbm.rds')
boostada <- readRDS('boostada.rds')
knn <- readRDS('knn.rds')
nb <- readRDS('nb.rds')
nnrpropp <- readRDS('nnrprop+sse.rds')
nnrpropm <- readRDS('nnrprop-sse.rds')
nnsag <- readRDS('nnsagsse.rds')
nnslr <- readRDS('nnslrsse.rds')
tim <- data.frame()
train_df <- data.frame()
val_df <- data.frame()
test_df <- data.frame()
lt <-list(svml,svmr,lda,rf,boostgbm,boostada,nb,knn)
for(i in 1:8){
obj <- lt[[i]]
#training
pred <- predict(obj,dat[!names(dat) %in% t])#nb warnings
obj_tab <- confusionMatrix(table(dat[,t],pred))
train_df <- rbind(train_df,c(obj_tab$overall[1:2],obj_tab$byClass))
#obj_tab$table
#class(obj_tab$byClass)
#validation
#val_df <- rbind(val_df, obj$results[,c("Accuracy",'Kappa')])
#test
pred2 <- predict(obj,itest[!names(dat) %in% t])
obj_tab2 <- confusionMatrix(table(itest[,t],pred2))
test_df <- rbind(test_df,c(obj_tab2$overall[1:2],obj_tab2$byClass))
tim <- rbind(tim,obj$times$everything[1:3])
}
val_df <- rbind(val_df, lt[[1]]$results[,c("Accuracy",'Kappa')])
val_df <- rbind(val_df, lt[[2]]$results[3,c("Accuracy",'Kappa')])
val_df <- rbind(val_df, lt[[3]]$results[,c("Accuracy",'Kappa')])
val_df <- rbind(val_df, lt[[4]]$results[2,c("Accuracy",'Kappa')])
val_df <- rbind(val_df, lt[[5]]$results[6,c("Accuracy",'Kappa')])
val_df <- rbind(val_df, lt[[6]]$results[9,c("Accuracy",'Kappa')])
val_df <- rbind(val_df, lt[[7]]$results[2,c("Accuracy",'Kappa')])
val_df <- rbind(val_df, lt[[8]]$results[3,c("Accuracy",'Kappa')])
colnames(train_df) <- c('Accuracy','Kappa','Sensitivity','Specificity','Pos Pred Value','Neg Pred Value','Prevalence','Detection Rate','Detection Prevalence','Balanced Accuracy')
colnames(val_df) <- c('Accuracy','Kappa')
colnames(test_df) <- c('Accuracy','Kappa','Sensitivity','Specificity','Pos Pred Value','Neg Pred Value','Prevalence','Detection Rate','Detection Prevalence','Balanced Accuracy')
colnames(tim) <- c('user','self', 'elapsed')
ltn <- list(nnrpropp,nnrpropm,nnsag,nnslr)
for(i in 1:4){
obj <- ltn[[i]]
pred <- apply(obj$net.result[[which.min(obj$result.matrix[1,])]],1,which.max)#min error rep only
pred <- sort(unique(dat[,t]))[pred]
net_tab <- confusionMatrix(table(dat[,t],pred))
train_df <- rbind(train_df,c(net_tab$overall[1:2],net_tab$byClass))
res <- compute(obj,itest[,!names(dat) %in% t],rep=which.min(obj$result.matrix[1,]))$net.result
pred2 <- apply(res,1,which.max)#min error rep only
pred2 <- sort(unique(itest[,t]))[pred2]
net_tab2 <- confusionMatrix(table(itest[,t],pred2))
test_df <- rbind(test_df,c(net_tab2$overall[1:2],net_tab2$byClass))
}
rownames(train_df) <- c('svmLinear','svmRadial','LDA','Random Forest','Gradient Boosting','AdaBoost','Naive Bayes','KNN','NNrprop+','NNrprop-','NNsag','NNslr')
rownames(val_df) <- c('svmLinear','svmRadial','LDA','Random Forest','Gradient Boosting','AdaBoost','Naive Bayes','KNN')#,'NNrprop+','NNrprop-','NNsag','NNslr')
rownames(test_df) <- c('svmLinear','svmRadial','LDA','Random Forest','Gradient Boosting','AdaBoost','Naive Bayes','KNN','NNrprop+','NNrprop-','NNsag','NNslr')
rownames(tim) <- c('svmLinear','svmRadial','LDA','Random Forest','Gradient Boosting','AdaBoost','Naive Bayes','KNN')#,'NNrprop+','NNrprop-','NNsag','NNslr')
#sapply(lt,function(a){a$method})
tr <- round(train_df[order(train_df$Kappa,decreasing = T),],3)
vl <-round(val_df[order(val_df$Kappa,decreasing = T),],3)
tt <- round(test_df[order(test_df$Kappa,decreasing = T),],3)
tm <- tim[order(tim$elapsed),]
tm_withnn <- c(tim[,3],c(78.43,25.85,18.78,41.77))
View(tt)
names(tm_withnn) <- c('svmLinear','svmRadial','LDA','Random Forest','Gradient Boosting','AdaBoost','Naive Bayes','KNN','NNrprop+','NNrprop-','NNsag','NNslr')
tm_withnn <- as.data.frame(sort(tm_withnn))
colnames(tm_withnn) <- 'Time (s);'
View(tm_withnn)
max(table(dat$Class)/length(dat$Class))#baseline
#***
#seeds"boot632" in which case B is the number of resamples plus 1
isd <- vector(mode='list',ifelse(grepl("cv", input$_Res_met,11,26))
for(i in 1:(length(isd)-1)) isd[[i]] <- sample.int(1000, switch(,svml=1,svmr=3,lda=1,rf=3,boostgbm=9,boostada=9,knn=3,nb=2))# #tun para
isd[[length(isd)]] <- sample.int(1000, 1)
#switch(svml=1,svmr=3,lda=1,rf=3,boostgbm=9,boostada=9,knn=3,nb=2)
#switch(,'1'=1,'2'=3,'3'=1,'4'=3,'5'=9,'6'=9,'7'=3,'8'=2)
***#
#knowledeg data class3
library(gdata)
traindata <- read.xls('http://archive.ics.uci.edu/ml/machine-learning-databases/00257/Data_User_Modeling_Dataset_Hamdi%20Tolga%20KAHRAMAN.xls',sheet = 2)
traindata <- traindata[,1:6]
colnames(traindata)[6] <- 'UNS'
testdata <- read.xls('http://archive.ics.uci.edu/ml/machine-learning-databases/00257/Data_User_Modeling_Dataset_Hamdi%20Tolga%20KAHRAMAN.xls',sheet = 3)
testdata <- testdata[,1:6]
colnames(testdata)[6] <- 'UNS'
levels(testdata$UNS)[4] <- 'very_low'
dat <- rbind(traindata,testdata)
write.csv(dat,'class3.csv')
dat <- read.csv('class3.csv')
set.seed(5678)
idi <- createDataPartition(dat$UNS,p=0.8,list=F)
itest <- dat[-idi,2:7]
dat <- dat[idi,2:7]
svml <- readRDS('svmLinear.rds')
svmr <- readRDS('svmRadial.rds')
svmp <- readRDS('svmPoly.rds')
lda <- readRDS('lda.rds')
rf <- readRDS('rf.rds')
rp <- readRDS('rpart.rds')
boostgbm <- readRDS('boostgbm.rds')
boostxgb <- readRDS('boostxgb.rds')
knn <- readRDS('knn.rds')
nb <- readRDS('nb.rds')
nnrpropp <- readRDS('nnrprop+.rds')
nnrpropm <- readRDS('nnrprop-.rds')
nnsag <- readRDS('nnsag.rds')
nnslr <- readRDS('nnslr.rds')
t <- 'UNS'
tim <- data.frame()
train_df <- data.frame()
val_df <- data.frame()
test_df <- data.frame()
lt <-list(svml,svmr,svmp,lda,rf,rp,boostgbm,boostxgb,nb,knn)
for(i in 1:10){
obj <- lt[[i]]
#training
pred <- predict(obj,dat[!names(dat) %in% t])#nb warnings
obj_tab <- confusionMatrix(table(dat[,t],pred))
train_df <- rbind(train_df,c(obj_tab$overall[1:2],obj_tab$byClass[which.max(table(dat[,t])),]))
#sensitivity of major class only because 4 rows
#test
pred2 <- predict(obj,itest[!names(dat) %in% t])
obj_tab2 <- confusionMatrix(table(itest[,t],pred2))
test_df <- rbind(test_df,c(obj_tab2$overall[1:2],obj_tab2$byClass[which.max(table(dat[,t])),]))
tim <- rbind(tim,obj$times$everything[1:3])
}
for(i in 1:10){
val_df <- rbind(val_df, lt[[i]]$results[which.max(lt[[i]]$results$Kappa),c("Accuracy",'Kappa')])
}
colnames(train_df) <- c('Accuracy','Kappa','Sensitivity','Specificity','Pos Pred Value','Neg Pred Value','Prevalence','Detection Rate','Detection Prevalence','Balanced Accuracy')
colnames(val_df) <- c('Accuracy','Kappa')
colnames(test_df) <- c('Accuracy','Kappa','Sensitivity','Specificity','Pos Pred Value','Neg Pred Value','Prevalence','Detection Rate','Detection Prevalence','Balanced Accuracy')
colnames(tim) <- c('user','self', 'elapsed')
ltn <- list(nnrpropp,nnrpropm,nnsag,nnslr)
for(i in 1:4){
obj <- ltn[[i]]
pred <- apply(obj$net.result[[which.min(obj$result.matrix[1,])]],1,which.max)#min error rep only
#pred <- sort(unique(dat[,t]))[pred]
pred <- gsub(t,'',colnames(obj$response))[pred]
net_tab <- confusionMatrix(table(dat[,t],pred))
train_df <- rbind(train_df,c(net_tab$overall[1:2],net_tab$byClass[which.max(table(dat[,t])),]))
mxs <- apply(dat[!names(dat) %in% t], 2, max)
mns <- apply(dat[!names(dat) %in% t], 2, min)
dv <- mxs-mns
dv[dv==0] <- 1 #avoid NaN
test_msc <- scale(itest[,!names(itest) %in% t],scale=dv)
res <- compute(obj,test_msc,rep=which.min(obj$result.matrix[1,]))$net.result
pred2 <- apply(res,1,which.max)#min error rep only
#pred2 <- sort(unique(itest[,t]))[pred2]
pred2 <- gsub(t,'',colnames(obj$response))[pred2]
net_tab2 <- confusionMatrix(table(itest[,t],pred2))
test_df <- rbind(test_df,c(net_tab2$overall[1:2],net_tab2$byClass[which.max(table(dat[,t])),]))
}
rownames(train_df) <- c('svmLinear','svmRadial','svmPoly','LDA','Random Forest','Rpart','Gradient Boosting','eXtreme Grad. B.','Naive Bayes','KNN','NNrprop+','NNrprop-','NNsag','NNslr')
rownames(val_df) <- c('svmLinear','svmRadial','svmPoly','LDA','Random Forest','Rpart','Gradient Boosting','eXtreme Grad. B.','Naive Bayes','KNN')#,'NNrprop+','NNrprop-','NNsag','NNslr')
rownames(test_df) <- c('svmLinear','svmRadial','svmPoly','LDA','Random Forest','Rpart','Gradient Boosting','eXtreme Grad. B.','Naive Bayes','KNN','NNrprop+','NNrprop-','NNsag','NNslr')
rownames(tim) <- c('svmLinear','svmRadial','svmPoly','LDA','Random Forest','Rpart','Gradient Boosting','eXtreme Grad. B.','Naive Bayes','KNN')#,'NNrprop+','NNrprop-','NNsag','NNslr')
tr <- round(train_df[order(train_df$Kappa,decreasing = T),],3)
vl <-round(val_df[order(val_df$Kappa,decreasing = T),],3)
tt <- round(test_df[order(test_df$Kappa,decreasing = T),],3)
tm <- tim[order(tim$elapsed),]
tm_withnn <- c(tim[,3],c(31.30,31.34,61.70,50.04))
View(tt)
View(tr)
View(vl)
names(tm_withnn) <- c('svmLinear','svmRadial','svmPoly','LDA','Random Forest','Rpart','Gradient Boosting','eXtreme Grad. B.','Naive Bayes','KNN','NNrprop+','NNrprop-','NNsag','NNslr')
tm_withnn <- as.data.frame(sort(tm_withnn))
colnames(tm_withnn) <- 'Time (s);'
View(tm_withnn)
max(table(dat[,t])/length(dat[,t]))#baseline
#ionosphere class2
library(mlbench)
data("Ionosphere")
#write.csv(Ionosphere,'class2.csv')
dat <- Ionosphere#read.csv('class3.csv')
dat$V1 <- as.numeric(dat$V1)
dat$V2 <- as.numeric(dat$V2)
set.seed(5678)
t <- 'Class'
idi <- createDataPartition(dat[,t],p=0.8,list=F)
itest <- dat[-idi,]
dat <- dat[idi,]
svml <- readRDS('svmLinear.rds')
svmr <- readRDS('svmRadial.rds')
svmp <- readRDS('svmPoly.rds')
sqda <- readRDS('sqda.rds')
rf <- readRDS('rf.rds')
rp <- readRDS('rpart.rds')
boostgbm <- readRDS('boostgbm.rds')
boostxgb <- readRDS('boostxgb.rds')
boostada <- readRDS('boostada.rds')
reglog <- readRDS('reglog.rds')
knn <- readRDS('knn.rds')
nb <- readRDS('nb.rds')
nnrpropp <- readRDS('nnrprop+.rds')
nnrpropm <- readRDS('nnrprop-.rds')
nnsag <- readRDS('nnsag.rds')
nnslr <- readRDS('nnslr.rds')
tim <- data.frame()
train_df <- data.frame()
val_df <- data.frame()
test_df <- data.frame()
lt <-list(svml,svmr,svmp,sqda,rf,rp,boostgbm,boostxgb,boostada,reglog,nb,knn)
for(i in 1:12){
obj <- lt[[i]]
#training
pred <- predict(obj,dat[!names(dat) %in% t])#nb warnings
obj_tab <- confusionMatrix(table(dat[,t],pred))
train_df <- rbind(train_df,c(obj_tab$overall[1:2],obj_tab$byClass))
#sensitivity of major class only because 4 rows
#test
pred2 <- predict(obj,itest[!names(dat) %in% t])
obj_tab2 <- confusionMatrix(table(itest[,t],pred2))
test_df <- rbind(test_df,c(obj_tab2$overall[1:2],obj_tab2$byClass))
tim <- rbind(tim,obj$times$everything[1:3])
}
for(i in 1:12){
val_df <- rbind(val_df, lt[[i]]$results[which.max(lt[[i]]$results$Kappa),c("Accuracy",'Kappa')])
}
colnames(train_df) <- c('Accuracy','Kappa','Sensitivity','Specificity','Pos Pred Value','Neg Pred Value','Prevalence','Detection Rate','Detection Prevalence','Balanced Accuracy')
colnames(val_df) <- c('Accuracy','Kappa')
colnames(test_df) <- c('Accuracy','Kappa','Sensitivity','Specificity','Pos Pred Value','Neg Pred Value','Prevalence','Detection Rate','Detection Prevalence','Balanced Accuracy')
colnames(tim) <- c('user','self', 'elapsed')
ltn <- list(nnrpropp,nnrpropm,nnsag,nnslr)
for(i in 1:4){
obj <- ltn[[i]]
pred <- apply(obj$net.result[[which.min(obj$result.matrix[1,])]],1,which.max)#min error rep only
#pred <- sort(unique(dat[,t]))[pred]
pred <- gsub(t,'',colnames(obj$response))[pred]
net_tab <- confusionMatrix(table(dat[,t],pred))
train_df <- rbind(train_df,c(net_tab$overall[1:2],net_tab$byClass))
mxs <- apply(dat[!names(dat) %in% t], 2, max)
mns <- apply(dat[!names(dat) %in% t], 2, min)
dv <- mxs-mns
dv[dv==0] <- 1 #avoid NaN
test_msc <- scale(itest[,!names(itest) %in% t],scale=dv)
res <- compute(obj,test_msc,rep=which.min(obj$result.matrix[1,]))$net.result
pred2 <- apply(res,1,which.max)#min error rep only
#pred2 <- sort(unique(itest[,t]))[pred2]
pred2 <- gsub(t,'',colnames(obj$response))[pred2]
net_tab2 <- confusionMatrix(table(itest[,t],pred2))
test_df <- rbind(test_df,c(net_tab2$overall[1:2],net_tab2$byClass))
}
rownames(train_df) <- c('svmLinear','svmRadial','svmPoly','sQDA','Random Forest','Rpart','Gradient Boosting','eXtreme Grad. B.','AdaBoost','Logistic','Naive Bayes','KNN','NNrprop+','NNrprop-','NNsag','NNslr')
rownames(val_df) <- c('svmLinear','svmRadial','svmPoly','sQDA','Random Forest','Rpart','Gradient Boosting','eXtreme Grad. B.','AdaBoost','Logistic','Naive Bayes','KNN')#,'NNrprop+','NNrprop-','NNsag','NNslr')
rownames(test_df) <- c('svmLinear','svmRadial','svmPoly','sQDA','Random Forest','Rpart','Gradient Boosting','eXtreme Grad. B.','AdaBoost','Logistic','Naive Bayes','KNN','NNrprop+','NNrprop-','NNsag','NNslr')
rownames(tim) <- c('svmLinear','svmRadial','svmPoly','sQDA','Random Forest','Rpart','Gradient Boosting','eXtreme Grad. B.','AdaBoost','Logistic','Naive Bayes','KNN')#,'NNrprop+','NNrprop-','NNsag','NNslr')
tr <- round(train_df[order(train_df$Kappa,decreasing = T),],3)
vl <-round(val_df[order(val_df$Kappa,decreasing = T),],3)
tt <- round(test_df[order(test_df$Kappa,decreasing = T),],3)
tm <- tim[order(tim$elapsed),]
tm_withnn <- c(tim[,3],c(31.30,31.34,61.70,50.04))
View(tt)
View(tr)
View(vl)
names(tm_withnn) <- c('svmLinear','svmRadial','svmPoly','sQDA','Random Forest','Rpart','Gradient Boosting','eXtreme Grad. B.','AdaBoost','Logistic','Naive Bayes','KNN','NNrprop+','NNrprop-','NNsag','NNslr')
tm_withnn <- as.data.frame(sort(tm_withnn))
colnames(tm_withnn) <- 'Time (s);'
View(tm_withnn)
max(table(dat[,t])/length(dat[,t]))#baseline
#segmentation class1
library(caret)
data("segmentationData")
#dat <- readRDS('dat.rds')#****saved with p=100
dat <- segmentationData
set.seed(5678)
t <- 'Class'
idi <- createDataPartition(dat[,t],p=0.8,list=F)
itest <- dat[-idi,3:61]
dat <- dat[idi,3:61]
svml <- readRDS('svmLinear.rds')
svmr <- readRDS('svmRadial.rds')
svmp <- readRDS('svmPoly.rds')
lda <- readRDS('lda.rds')
rf <- readRDS('rf.rds')
rp <- readRDS('rpart.rds')
boostgbm <- readRDS('boostgbm.rds')
boostxgb <- readRDS('boostxgb.rds')
boostada <- readRDS('boostada.rds')
reglog <- readRDS('reglog.rds')
knn <- readRDS('knn.rds')
nb <- readRDS('nb.rds')
nnrpropp <- readRDS('nnrprop+.rds')
nnrpropm <- readRDS('nnrprop-.rds')
nnsag <- readRDS('nnsag.rds')
nnslr <- readRDS('nnslr.rds')
tim <- data.frame()
train_df <- data.frame()
val_df <- data.frame()
test_df <- data.frame()
lt <-list(svml,svmr,svmp,lda,rf,rp,boostgbm,boostxgb,boostada,reglog,nb,knn)
for(i in 1:12){
obj <- lt[[i]]
#training
pred <- predict(obj,dat[!names(dat) %in% t])#nb warnings
obj_tab <- confusionMatrix(table(dat[,t],pred))
train_df <- rbind(train_df,c(obj_tab$overall[1:2],obj_tab$byClass))
#sensitivity of major class only because 4 rows
#test
pred2 <- predict(obj,itest[!names(dat) %in% t])
obj_tab2 <- confusionMatrix(table(itest[,t],pred2))
test_df <- rbind(test_df,c(obj_tab2$overall[1:2],obj_tab2$byClass))
tim <- rbind(tim,obj$times$everything[1:3])
}
for(i in 1:12){
val_df <- rbind(val_df, lt[[i]]$results[which.max(lt[[i]]$results$Kappa),c("Accuracy",'Kappa')])
}
colnames(train_df) <- c('Accuracy','Kappa','Sensitivity','Specificity','Pos Pred Value','Neg Pred Value','Prevalence','Detection Rate','Detection Prevalence','Balanced Accuracy')
colnames(val_df) <- c('Accuracy','Kappa')
colnames(test_df) <- c('Accuracy','Kappa','Sensitivity','Specificity','Pos Pred Value','Neg Pred Value','Prevalence','Detection Rate','Detection Prevalence','Balanced Accuracy')
colnames(tim) <- c('user','self', 'elapsed')
ltn <- list(nnrpropp,nnrpropm,nnsag,nnslr)
for(i in 1:4){
obj <- ltn[[i]]
pred <- apply(obj$net.result[[which.min(obj$result.matrix[1,])]],1,which.max)#min error rep only
#pred <- sort(unique(dat[,t]))[pred]
pred <- gsub(t,'',colnames(obj$response))[pred]
net_tab <- confusionMatrix(table(dat[,t],pred))
train_df <- rbind(train_df,c(net_tab$overall[1:2],net_tab$byClass))
mxs <- apply(dat[!names(dat) %in% t], 2, max)
mns <- apply(dat[!names(dat) %in% t], 2, min)
dv <- mxs-mns
dv[dv==0] <- 1 #avoid NaN
test_msc <- scale(itest[,!names(itest) %in% t],scale=dv)
res <- compute(obj,test_msc,rep=which.min(obj$result.matrix[1,]))$net.result