-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpupil.py
144 lines (119 loc) · 5.07 KB
/
pupil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import numpy as np
import cv2
import time
import pygame
import datetime
import requests
count = 0
pygame.mixer.init()
pygame.mixer.music.load("wakeMeUpChorus.mp3")
pygame.mixer.music.play(-1)
pygame.mixer.music.pause()
cap = cv2.VideoCapture(0) # 640,480
w = 640
h = 480
start = 0
while(True):
ret, frame = cap.read()
if ret == True:
# downsample
# frameD = cv2.pyrDown(cv2.pyrDown(frame))
# frameDBW = cv2.cvtColor(frameD,cv2.COLOR_RGB2GRAY)
# detect face
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
faces = cv2.CascadeClassifier('eye.xml')
detected = faces.detectMultiScale(frame, 1.3, 5)
# faces = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# detected2 = faces.detectMultiScale(frameDBW, 1.3, 5)
pupilFrame = frame
pupilO = frame
windowClose = np.ones((5, 5), np.uint8)
windowOpen = np.ones((2, 2), np.uint8)
windowErode = np.ones((2, 2), np.uint8)
irises = []
for (ex, ey, ew, eh) in detected:
iris_w = int(ex + float(ew / 2))
iris_h = int(ey + float(eh / 2))
irises.append([np.float32(iris_w), np.float32(iris_h)])
if (len(irises) < 2):
# print(start)
start += 1
if (start == 60):
requests.post(
url="https://thawing-everglades-71893.herokuapp.com/user/count", data={"username": "duy"})
pygame.mixer.music.unpause()
else:
start = 0
pygame.mixer.music.pause()
# draw square
for (x, y, w, h) in detected:
cv2.rectangle(frame, (x, y), ((x+w), (y+h)), (0, 0, 255), 1)
cv2.line(frame, (x, y), ((x+w, y+h)), (0, 0, 255), 1)
cv2.line(frame, (x+w, y), ((x, y+h)), (0, 0, 255), 1)
pupilFrame = cv2.equalizeHist(
frame[(y+(h*25//100)):(y+h), x:(x+w)])
pupilO = pupilFrame
ret, pupilFrame = cv2.threshold(
pupilFrame, 55, 255, cv2.THRESH_BINARY) # 50 ..nothin 70 is better
pupilFrame = cv2.morphologyEx(
pupilFrame, cv2.MORPH_CLOSE, windowClose)
pupilFrame = cv2.morphologyEx(
pupilFrame, cv2.MORPH_ERODE, windowErode)
pupilFrame = cv2.morphologyEx(
pupilFrame, cv2.MORPH_OPEN, windowOpen)
# so above we do image processing to get the pupil..
# now we find the biggest blob and get the centriod
threshold = cv2.inRange(pupilFrame, 250, 255) # get the blobs
# (python 3.6) contours, hierarchy = cv2.findContours(threshold, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
contours, hierarchy = cv2.findContours(
threshold, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# if there are 3 or more blobs, delete the biggest and delete the left most for the right eye
# if there are 2 blob, take the second largest
# if there are 1 or less blobs, do nothing
if len(contours) >= 2:
# find biggest blob
maxArea = 0
MAindex = 0 # to get the unwanted frame
distanceX = [] # delete the left most (for right eye)
currentIndex = 0
for cnt in contours:
area = cv2.contourArea(cnt, True)
center = cv2.moments(cnt)
if (center['m00'] != 0):
cx, cy = int(center['m10']/center['m00']
), int(center['m01']/center['m00'])
distanceX.append(cx)
if area > maxArea:
maxArea = area
MAindex = currentIndex
currentIndex = currentIndex + 1
del contours[MAindex] # remove the picture frame contour
del distanceX[MAindex]
eye = 'right'
if len(contours) >= 2: # delete the left most blob for right eye
if eye == 'right':
edgeOfEye = distanceX.index(min(distanceX))
else:
edgeOfEye = distanceX.index(max(distanceX))
del contours[edgeOfEye]
del distanceX[edgeOfEye]
if len(contours) >= 1: # get largest blob
maxArea = 0
for cnt in contours:
area = cv2.contourArea(cnt)
if area > maxArea:
maxArea = area
largeBlob = cnt
if len(largeBlob) > 0:
center = cv2.moments(largeBlob)
cx, cy = int(center['m10']/center['m00']
), int(center['m01']/center['m00'])
cv2.circle(pupilO, (cx, cy), 5, 255, -1)
cv2.imshow('frame', pupilO)
# cv2.imshow('frame2', pupilFrame)
# show picture
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release everything if job is finished
cap.release()
cv2.destroyAllWindows()