-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgranger_causation_test.py
135 lines (109 loc) · 4.21 KB
/
granger_causation_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy as np
import pandas as pd
import itertools
from statsmodels.tsa.stattools import grangercausalitytests, adfuller, kpss
def construct_signal(start, end, signal_end, sr, signal_type = "rect"):
signal = np.zeros(int(signal_end*sr), dtype=int)
if signal_type == "rect":
for i, s in enumerate(start):
s = int(start[i]*sr)
e = int(end[i]*sr)
signal[s:e] = 1
elif signal_type == "spike":
for i, s in enumerate(start):
s = int(start[i]*sr)
signal[s] = 1
return signal
def create_signal_from_transitions(df_transition, sr = 10, signal_type = "rect"):
list_signals = {}
signal_end = list(df_transition["end"])[-1]
for roi in list(set(df_transition["roi"])):
df_x = df_transition[df_transition["roi"] == roi]
start = df_x['start'].values
end = df_x['end'].values
signal = construct_signal(start, end, signal_end, sr, signal_type)
list_signals[roi] = signal
return list_signals
def adf_test(time_series):
"""
tests the null hypothesis that a unit root is present in a time series sample."""
result = adfuller(time_series)
print('ADF Statistics: %f' % result[0])
print('p-value: %f' % result[1])
print('Critical values:')
for key, value in result[4].items():
print('\t%s: %.3f' % (key, value))
return result
def kpss_test(time_series):
'''
testing a null hypothesis that an observable time series is stationary
around a deterministic trend (i.e. trend-stationary) against the alternative of a unit root.'''
result = kpss(time_series)
statistic, p_value, n_lags, critical_values = result
print(f'KPSS Statistic: {statistic}')
print(f'p-value: {p_value}')
print(f'num lags: {n_lags}')
print('Critial Values:')
for key, value in critical_values.items():
print(f' {key} : {value}')
return result
def run_adf_kpss_test(signals_from_transitions):
lroi = []
lstat = []
lpval = []
lnlag = []
lcritval = []
ltesttype = []
for k, v in signals_from_transitions.items():
signal = v
adf_result = adfuller(signal)
lroi.append(k)
ltesttype.append("adf")
lstat.append(adf_result[0])
lpval.append(round(adf_result[1],3))
lnlag.append(adf_result[2])
lcritval.append(adf_result[4])
kpss_result = kpss(signal, nlags="auto")
lroi.append(k)
ltesttype.append("kpss")
lstat.append(kpss_result[0])
lpval.append(round(kpss_result[1],3))
lnlag.append(kpss_result[2])
lcritval.append(kpss_result[3])
df_test = pd.DataFrame({"roi": lroi,
"test_type": ltesttype,
"stat_val": lstat,
"pval": lpval,
"nlag": lnlag,
"crit_val": lcritval})
return df_test
def granger_causality_test(signals_from_transitions, maxlag = 10):
rois = list(signals_from_transitions.keys())
list_perm = list(itertools.permutations(rois, 2))
df_granger = pd.DataFrame(columns = ["roi1", "roi2", "lag", "pval"])
# maxlag = maxlag
for perm in list_perm:
data = pd.DataFrame(signals_from_transitions)[list(perm)]
x = grangercausalitytests(data, maxlag=maxlag, verbose=False)
lroi1 = [perm[0]] * maxlag
lroi2 = [perm[1]] * maxlag
llag = np.arange(maxlag)
lpval = []
for i in range(1, maxlag + 1):
p_val = x[i][0]["ssr_ftest"][1]
lpval.append(round(p_val, 3))
df_x = pd.DataFrame({"roi1": lroi1,
"roi2": lroi2,
"lag": llag,
"pval": lpval})
df_granger = pd.concat([df_granger, df_x], ignore_index=True)
return df_granger
# from mongo_connection import Mongo_connection
# mongo = Mongo_connection()
# mongo.connect()
# document = mongo.find_one({"pID": "001", "trial": 2})
# d_data = document["data"]
# df_data = pd.DataFrame(d_data)
# signal = create_signal_from_transitions(df_data)
# df_granger = granger_causality_test(signal)
# print(df_granger[df_granger["pval"] < 0.05])